
JOURNAL OF ENGINEER/NG AND TECHNOLOGY,VoI.II December 2013 lssN 1684-4114

http : //www. iutoic-dhoko.eduljet

MHD Free Convection Flow along a Vertical \ilavy Surface
with Linear Variation of Thermal Conductivity and
Reciprocal Variation of Viscosity with Ternperature

Nazma Parveen* and M. A. Alim

Received 31 June 2012; Accepted after revision 30 December 2013

ABSTRACT

The present work desuibes the effect on MHD free convection flow of viscous
incompressible fluid along a uniformly heated verticsl wavy sarfoce with temperature

dependent thermul conductivitlt and viscosity. Viscosity considered is inversely

proportional to the linear function of temperature. The governing houndary layer

equations are first transformed into a non-dimensional form using suitable set of

dimensionless variables. The resulting nonlinear system of partial differcntial

equations are mapped into the domain of a vertical flat plate and then solved

namerically employing the implicit ftnite difference method, known us the Keller-box

scheme. The numerical results of the skin friction coefficient and the rate of heat

transfer in terms of local Nasselt number, the stream lines us well as the isotherms sre

shown graphically for u selection of parameters set consisting of thermal conductivity

variation psrumeter and viscosity variation parameter .

Keywords: MHD, Convection flow, Wavy surface, Keller-box scheme, Stream line,

Thermal conductivity.
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1 INTRODUCTION

Many investigators because of its considerable practical applications have presented

the laminar free convection flow of an electrically conducting fluid and heat transfer

problem. Physical properties like viscosity and thermal conductivity mast be changed

significantly with temperature. The viscosity of liquids decreases and the viscosity of

gases increase with temperature. It is also necessary to sfudy the heat transfer from an

iruegular surface because ir:regular surfaces are often present in many applications, such as

radiator, heat exchangers and heat transfer enhancement devices. The viscosity and

therrnal conductivity of the fluid to be proportional to a linear function of temperature,

two semi-empirical formulae which was proposed by Charraudeau !]. Yao [2] first

investigated the natural convection heat transfer from an isothermal vertical war,1z

swface and used an extended Prantdl's transposition theorem and a finite-difference

scheme. He proposed a simple transformation to study the natural convection heat

transfer for an isothermal vertical sinusoidal surface. These simple coordinate

transformations method to change the waly surface into a flat plate. Alam et al. [3]

considered the problem offree convection from a wavy vertical surface in presence ofa

transverse magnetic field. On the other hand, the combined effects of thermal and mass

diffusion on the natural convection flow of a viscous incompressible fluid along a

verlical wavy swface have been investigated by Hossain and Rees [4]. In this paper the

effect of waviness of the surface on the heat and mass flux has been investigated in

combination with the species concentration for a fluid having Prandtl number equal to

0.7. Hossain and Munir [5] investigated the natural convection flow of a viscous fluid

about a truncated cone with temperafure dependent viscosity and therrnal conductivity.

Natural convection of fluid with temperature dependent viscosity from heated vertical

wavy surface has been investigated by Hossain et al. [6]. Munir et al. l7l considered

natural convection of a viscous fluid with viscosity inversely proporlional to linear

function of temperature from a vertical wavy cone. Natural convection heat and mass

transfer along a verlical wavy surface have been investigated by Jang et al. [8]. Molla et

al. [9] studied natural convection flow along a vertical waqr surface with uniform

surface temperature in presence of heat generation/absorption. Yao [10] also studied

natural convection along a vertical complex wavy surface. Very recently, Parveen and

Alim [11] investigated Joule heating effect on Magnetohydrodynamic natural

convection flow along a vertical wavy surface with viscosity dependent on temperature.

At the same time Parveen and Alim [12] considered effect of temperature dependent
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thermal conductivity on magnetohydrodynamic natural convection flow along a

vertical wavy surface. It is known that thermal conductivity may be change

significantly with temperature. For a liquid, it has been found that the thermal

conductivity k varies with temperature in an approximately linear manner in the range

from 0 to 4000 F (see Kays [13]).

In all the above investigations the effect on MHD free convection flow along a

uniformly heated vertical wavy surface with temperature dependent thermal conductivity

and viscosity as the inversely proportional to linear function of temperature has not been

considered. The present study is used to deal with this problem. Thermal conductivity of

the fluid considered proportional to a linear function of temperature. The governing

partial differential equations are reduced to locally non-similar partial differential forms

by adopting some appropriate transformations. The transformed boundary layer equations

are solved numerically using implicit frnite difference scheme together with the Keller

box technique [a]. Numerical results of the surface shear stress in terms of local skin

friction coefficient and the rate of heat transfer in terms of local Nusselt number, the

streamlines as well as the isotherms are presented graphically.

2 FORMULATION OF THE PROBLEM

Consider a steady two dimensional free convection flow of an electrically conducting

viscous and incompressible fluid with variable thermal conductivity and viscosity along a

vertical waly surface. Over the work it is assumed that the surface temperature of the

vertical wavy surface Z. is uniform, where T, ) T*. The boundary layer analysis outlined

below allows tr(,() being arbitrary, but our detailed numerical work assumed that the

surface exhibits sinusoidal deformations. The waw surface mav be described bv

. ( ntrX\
Y* :o (X )=ds in l  

. - . - -  
|  ( l )

\  L )

where Z is the wavelength associated with the wavy surface.

The geometry of the wavy surface and the two-dimensional cartesian coordinate system

are shown in Fig. 1.

The conservation equations for the flow characterized with steady, laminar and

two-dimensional boundary layer, under the usual Boussinesq approximation,

the continuity, momentum and energy equations can be written as:
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where (x, y)are the dimensional coordinates along and normal to the tangent of

the surface and (U, n are the velocity components parallel to (X,y),

y, (= A, I Oxz + A' I ;2y\ is the Laplacian operator, g is the acceleration due to

Tw+

Fieure 1: The coordinate system and the physical model'
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gravity, P is the dimensional pressure of the fliid, p is the density, B6 is the

strength of magnetic freld, os is the electrical conduction, (D is the thermal

conductivity of the fluid in the boundary layer region depending on the fluid

temperature, F is the coefficient of thermal expansion, v (: 1t/p) is the

kinematics viscosity, p(1) is the dynamic viscosity of the fluid in the boundary
layer region depending on the fluid temperature and Co is the specific heat due to
constant pressure.

The boundary conditions relevant to the above problem are

U =0 ,V  =0 ,7  =T*  A t  Y  :Y *  =  O(X )

U=0 ,  T :T * ,  P :1  as  Y -+q

(6a)

(6b)

(7)k:k*U*r.(r-A)]

(8)

where Z, is the surface temperature, 7t is the ambient temperature of the fluid
and P* is the pressure of fluid outside the boundary layer.

The variable thermal conductivity cho,sen in this study that is introduced by
Charraudeau [1] and used by Hossain and Munir [5] as follows:

Temperature dependent viscosity inversely proportional to linear function of
temperature chosen is this case, which is introduced by Hossain and Munir [5] as
follows:

p -
l+  e ' (T  -T* )

where p- is the viscosity and k* is the thermal conductivity of the ambient fluid,

*  I  ( ) t t ,  .  *  l ( A k . ] .
€ =-l ' I and y =-l I is a constant evaluated at the film

pf \aT) f  k f \ar ) r

temperature of the flow T r = Il 2 (7. + T*) .

Using Prandtl's transposition theorem to transform the irregular waly
surface into a flat surface as extended by Yao l2l and boundary-layer
approximation, the following dimensionless variables are introduced for non-
dimensional izing the goveming equations,

X  Y -o  !  L2  ,, : ; ,  , : ;ora, p=ftrGiP
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pL  ̂  -u- .
u - -  u r  / L U ,  v =

p

o=T-T* .6 -=
T- -T*

nf .  - t /._  Gr  ,+ (V _o ,U) ,
p

(e)

do do

dxdX

where d is the non-dimensional temperature function and (u, v) are the
dimensionless velocity components parallel to (x, y). Introducing the above
dimensionless dependent and independent variables into equafions (2){5), the
following dimensionless form of the governing equations are obtained after
ignoring terms of smaller orders of magnitud e in Gr, the Grashof number defined
in (9).

4 *L=o
0x Ay

..6u ,  . .0u 0p ,  ̂ . .%_ 0p ,  ( t+o|)  ) 'zu
u - T v - :  -  - f  \ J - t  

- t ) - . : - f - -

0x Ay 0x 
- 

(I+e?) }y'z

_e(r+ o1) 99fu_ ur* e(I+ e0)' fu Ay

,-( ,4* "4) 
= -Gr% oP *o,(r+ o1) 02ry-. 

[ 6" Ay ) Ay Q+ e0) Ay'

_eo,(I+o1) 00 Ou _ )
(t.tof- fu ur-o*"-

u4 *r99= t (, + o,3 Yr * ,e\t!* !(r *,:V( 99\'
6x  A  Pr '  ^ / \  P r t  ^ " lAy )

(10)

(11 )

(r2)

(1  3)

where Pr=ClF* is the prandtl number, M =o'p:!: is the magnetic
k* pGr/t

parameter, t = t* (T- - T*) is viscosity variation parameter and

y = y. (T- - L ) ir the thermal conductivity variation parameter.

It can easily be seen that the convection induced by the wavy surface is described
by equations (10)-(13). We further notice that, equation (12) indicates that the
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pressure gradient along the y-direction is O(Cy-%) , which implies that lowest

order pressure gradient along x -direction can be determined from the inviscid

flow solution. For the present problem this pressure gradient @pl0x=0) is

zero. Equation (12) further shows that Gr%Op I Oy is O(1) and is determined

by the left-hand side of this equation. Thus, the elimination of 0p l}y from

equations (1 1) and (12) leads to

. .Ou . .Ou ( l+o l )  ) 'zu o*oo . .2  e( l+o j )  Ou O0
u- T v-= ------ : -------------- :b" 

Ox q, Q+e?) }y'z I+o] 
'-  

(1 +e0)2 fu Ay

-  M  
' - t t * - J  ' g

l +o i  l +o i

The corresponding boundary conditions for the present problem then turn into

(14)

(15)

governing

(18 )

l t =v :0 ,  0= l

u=0=0 ,  p=0
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Y = - T - )  V =

oy

following system of non linear equations are obtained,

( r+ o)  
f , ,  +1 f f ,  - (  ! **o,oy)  r , ,  * -J^ e -  M*/ '  f ,

(1+e0)"  4-  [2  r+oi  ) "  t+oi  t+oi '

to!o?_g,f, = r( f ,af '  _ f,q\-?*€e)r" ' -^ [ '  
A-  t  A*)

a t  ! =0  
]

as  y )@)

Now we introduce the following transformations to reduce the
equations to a convenient form:

tlr : x/o f (x,ry), ,l = y* /o , o = o(x,ry) (16)

where ry is the pseudo similarity variable and ty is the stream function that
satisfies the equation (10) and is defined by

ory
(17)

Introducing the transformations given in Eq. (16) and into Eqs. (1a) and (13) the

0x
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The boundary conditions (15) now take the following form:

" f  (x,o) = f  
' (x,o):0,  Q(x,o) =

f 
'(x,a) = g, 0(x,a) = g

(20)

In the above equations prime denote the differentiation with respect to 17 .

The local skin friction coefficient Cpald the rate of heat transfer in terms of the
local Nusselt number Nz, takes the followins form:

*t. o:yJ+ yl)u.f, (r * olVe'' *]re' =,(t' 
K-, *) (1e)

c u(Gr t x)% l, =ffi r,r*,o,

')

Nu,(Gr I x1-/o = -(t + r) rlt * ;, e' (x, o)

(2r)

(22)

3 NUMERICAL METHOD

Solutions of the local non-similar partial differential equations (18) and (19)
together with the boundary condition (20) are solved numerically by using
implicit finite difference method with the Keller-box Scheme. Since a good
description of this method and its application to the boundary layer flow
problems are given in the book by Cebeci and Bradshaw [4] and broadly used
by Hossain et al. [3-6].

The discretization of momentum and energy equations are carried out with

respect to non-dimensional coordinates x and r7 to convey the equations in finite
difference form by approximating the functions and their derivatives in terms of
the central differences in both the coordinate directions. Then the required
equations are to be linearized by using Newton's quasi-linearizationmethod. The
Jacobian matrix has a block-tridiagonal structure and the difference equations are
efficiently solved using a block-matrix version of the Thomas algorithm.

4 RESULTS AND DISCUSSION

The present work is to analyze the effect on MHD free convection flow of
viscous incompressible fluid along a uniformly heated vertical wavy surface with
temperature dependent thermal conductivity and viscosity as the inversely
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(b)

y=  3 .0 ,  a  =  0 .3 ,  M =  0 .02 ,  Pr=  0 .73

:l_i'=r=\.r'=-+.=.2'= -

_  r = 0 . 0
- - - - - -  e  =  0 .5
-----"-"--- a = 1.0

Figure 2: Variation of (a) skin friction coefficient Cp and (b) rate of heat transfer
Nu"against x for different values of e with o : 0.3, M : 0.02, y: 3.0 and Pr :

0 .73 .

proportional to linear frrnction of temperature. Numerical values of local
shearing stress and the rate of heat transfer are calculated from equations (21)

and (22) in terms of the skin friction coefficients C7, and Nusselt mrmber Nz"
respectively for a wide range of the axial distance x. For different values of the

aforementioned parameters y and e, the skin friction coefficient Cy*, the rate of
heat transfer in terms of Nusselt number Nu,, the streamlines as well as the
isotherms are shown graphically in Figs. 2-7.

Figs. 2(a) and 2(b) show that increase in the value of e: (0.0, 0.5, 1.0) leads

to decrease the value of skin friction coefficient and increases the rate of heat

transfer in terms of the local Nusselt number Nu, while Prandtl number Pr :

0.73, u: 0.3, M:0.02 and y: 3.0 at different position of x. Moreover, the

maximum values of local skin friction coefficient C1x are 1.13392,0.99176 and
0.93543 for e: 0.0, 0.5, 1.0 respectively which occurs at different position of x.

Furthermore, maximum values of local the rate of heat transfer are 0.68096,

0.70559 and 0.72124 for e : 0.0, 0.5, 1.0 respectively which occurs at x : 0.55. It
is seen that the local skin friction coefficient Cp decreases by 17 .50% and local

the rate of heat transfer increases by 5.58% respectively. Here it is concluded that
for high viscous fluid when inversely proportional to linear function of
temperature then the skin friction coefficient is slow and the corresponding rate

ofheat transfer is higher.

The analysis of the effect of thermal conductivity parameter y : (0.0, 1.0,

3.0, 6.0 and 8.0) on the surface shear stress in terms of the local skin friction
coefficient C7, and the rate of heat transfer in terms of the local Nusselt number
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Y = 0 . 0
Y =  1 . 0
v = 3 . 0
1 =  6 . 0
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s - 0 . 0 5 ,  ( x = 0 . 3 .  M  = 0 . 5 .  P r = 0 . 7 3
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Figure 3: Variation of (a) skin friction coefficient Cl and (b) rate of heat transfer
Nu, against r for different values of Twith cr : 0.3, e : 0.05, M : 0.5 and Pr : 0.7 3.

Nu, against r are exposed within the boundary layer with cr : 0.3, M:0.5, t:
0.05 and Pr : 0.73 in Fig. 3. From Fig. 3 it is noted that for increasing values of
thermal conductivity parameter y, both the skin friction coefficient and the heat
transfer rates increase along the upstream direction of the surface. Increasing
values of thermal conductivity parameter y increase the velocity and the
temperature as well as the temperature gradient of the surface.

Figs. 4 and 5 illustrate the effect of viscosity parameter e on the development
of streamlines and isotherms profile which are plotted for the amplitude of the
wavy surface o : 0.3, Prandtl number Pr : 0.73, y: 3.0 and M : 0.02. The

maximum values of ty, that is, V^u^ are 12.78, 13.17, 13.25 and 13.29 for

viscosity parameter e:0.0, 0.50, 1.0 and2.0 respectively. It is observed from
Fig. 4 that as the values of s increases the velocity boundary layer becomes
higher gradually and the opposite results observed for the thermal boundary layer
from Fig. 5.

The effect of thermal conductivityparameter yequal to 0.0,3.0,6.0 and 8.0 the
streamlines and isotherms profile are depicted by the Figs. 6 and 7 respectively
while Prandtl number Pr : 0.73, amplitude of wavy surface cr : 0.3, viscosity
parameter s : 0.05 and magnetic parameter M : 0.5. Fig. 6 depicts that the
maximum values of ry increases steadily while the values of 7 increases. The
maximum values of ty,thatis, V,nu" is 6.22 for y:0.0, V^u* is9.32 for y:3.0,

V^u is 11.56 for y:6.0 and t / /na* is 12.26 for y:8.0. From Fig.7, i t  is noted

that the temperature of the fluid flow increases for increasing values of 7.
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Figure 4: Streamlines for (a) e : 0.0 (b) e: 0.5 (c) e: 1.0 and (d) e:2.0 while
cr : 0.3, M : 0.02, y: 3.0 and Pr : 0.73.
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F igu re  5 :  I so the rms  fo r (a )  s :0 .0  (b )  e :0 .5  ( c )  e :1 .0  and (d )  e :2 .0

while cr : 0.3, M : 0.02, y-- 3.0 and Pr : 0.13.
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(c )  ,  I  r , j

,rrL,!,3\44=K-

20

1 5

Figure 6: Streamlines for (a) y:0.0 (b) y: L0 (c) y:3.0 and (d) 7:8.0
while Pr: 0.73, M:0.5, e : 0.05 and a : 0.3.

20
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Figure 7: Isotherms for (a) y: 0.0 (b) f : 1.0 (c) y: 3.0 and (d) y: 8.0 while pr
: 0.73, M: 0.5, e : 0.05 and o : 0.3.
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5 CONCLUSION

The effect on MHD free convection flow along a vertical wavy surface with

temperature dependent thermal conductivity and viscosity as the inversely

proportional to linear function of temperature has been studied in detail. From

the present analysis the following conclusions may be drawn:

r The local rate of heat transfer Nu,,the velocity of the fluid flow increase and

skin friction coefficient decreases over the whole boundary layer for

increasing values of e. The thermal boundary layer becomes thinner for

increasing value of viscosity variation parameter.

o Increasing values of thermal conductivity parameter y, the skin friction

coefficient C1i, the local rate of heat transfer Nu,, the velocity and the

temperature of the fluid flow significantly increase.

Table l: Comparison of the present numerical results of skin friction coefficient,

f 
'(",0) and the heat transfer, -0'(x,0) with Hossain et al. [6] for the variation of

Prandtl number Pr while M:0.0, y:0.0 and e : 0.0 with a:0.1,.

Pr
f '(x,o) -o'(x,o)

Hossain et al. [61 Present work Hossain et al.[6] Present work
1 . 0

10.0

25.0

50.0

100.0

0.908

0.591

0.485

0.485

0.3s2

0 . 9 1 0

0.595

0.489

0.419

0.3s1

0.401

0.825

1.066

1.066

1.542

0.399

0.823

r.064

1.284

1.542

A comparison of the present numerical results of the skin friction

coefficient/"(x,0) and the rate of heat transfer -0'(x,0) with the results obtained

by Hossain et al. [6] is depicted in Table 1. Here, the magnetic parameter M,

viscosity variation parameter e and thermal conductivity parameter y are ignored

while different values of Prandtl number Pr: (1.0, 10,25.0,50.0 and 100.0) are

chosen. From Table 1, it is clearly seen that the present results are excellent

agreement with the solution of Hossain et al. [6].
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