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ABSTRACT

Face recognition and verift.cation algorithms use a varity of features that describe a

face. Most popalar amongst these features are LBP (Local binary pattern) and its

vsrient Locul Ternary Pattern (LTP). LBP is very sensitive to neur aniform region and

is incapable of handling intensity uctuation that often happens dae to noise. This is

sddressed by introducing a ftxed threshold in LTP. However, s xed threshold often

fails to perfectly describe afeature. To address this issue, we propose an adaptive LTP

(ALTP) that extends LTP to evoke vibrant threshold To verify the proposed methods

we have used u recent challenging face datubase named Lqbel Face in ll/ild (LFW).

Our proposed ALTP method is light weight, und achieved an accurscy of 76.23%,

which is impressive in contrust to other computationally inexpensive state of the art

methods.
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can be categorized in three broad categories such as: Holistic based approaches,
Feature based approaches and Hybrid approaches. Among these approaches
theLBP [2, 3] based Holistic approaches became popular for being simple in
terms of computational complexity and higher accuracy. We, thus, describe the
basics of LBP and its variant LTP first and then briefly summarize different
methods that fall into these three categories in the subsequent subsections.

able 1: of hohstrc based t'ace recosmtion method

Author Publicatir
n year

Dataset Methods Classifier
Highest

Accuracy

Conrad Sanderson,
Brian C. Lovell f7l

2009 LFW 2D DCT Multi-Region
Histosram (MRH)

72.95%

Conrad Sanderson,
Brian C. Lovell f7l

2009 LFW 2D DCT PCA 59.82%

Conrad Sanderson,
Brian C. Lovell f7l

2009 LFW 2D DCT Randomized
Binarv Tree (RBT)

72.45%

Conrad Sanderson,
Brian C. Lovell [7.|

2009 FERET 2D DCT Multi-Region
Histosram (MRH)

89%

Conrad Sanderson
Brian C. Lovell f7l

2009 FERET 2D DCT PCA 65%

Sawides .M, Abiantun,
Heo, Park, Xie,
Vijayakumar,
B.v.K.[8]

2006 FRGC-2 Kernel
Corelation
Feature
Analysis
(KCFA)

SVM 81.s0%

Sawides.M, Abiantun,
Heo, Park, Xie,
Vijayakumar,
B.V.K.t9t

2006 FRGC-2 DCT SVM 91.33%

Xiaoyuan Jing, Qian
Liu, Chao Lan[10]

2 0 1 0 FRGC-2

AR

Holistic
Orthogona
Analysis
(HOA)and
PCA

Fisher Criterion 67.06%

8t.04%
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Table 2: Su f Holi based face
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Author Publicatio
n year

Dataset Methods Classifier
Ilighest

Accuracy

Papa J.P,
Falcao[1 1]

2009 ORL

CBCL

PCA

PCA

Optimum
Forest(OPF)
SVM

ANN-MLP

Optimum
Forest(OPF)
SVM

ANN-MLP

Path 96.84
0.56%
98.17
1.00%
64.00
1.86%
84.73
0.56%
86.63
052%

+

+

-T

+

=

74.25 +
r.24%

X. Tan and
B. Triggs[4]

2007 FRGC-
104

Extended
Yale-B

CMU
PIE

LBPIX2
PP+LBP/X2
PP+LTP/X2
PP+LTP+DT
LBPIX2
PP+LBPIX2
PP+LTPIK2
PP+LBP+DT
PP+LTP+DT
PP+LTP+DT

Distance Transform
based similarity metric
(DT)

41.6%
79%
80.4%
86.3%
44.4%
875%
97. r%
95.2%
97.2%
100%

J. Write, A.
Y. A.
Ganesh, S.S.
Sastry, and
Y. Ma[2]

2009 ixtended
(ale-B

\R
)atabase

11gen

-aplacian

{andom

)ownsample

lisher

l-Random

3igen
'-aplacian

landom

)ownsample

lisher

l-Random

Sparse Representation-
based
Classification (SRC)

865%
8749%
82.6%
7457%
86.91%
90.72%
7r .14%
73.71%
s7.8%
46.78%
8698%
78j4%



a re e lon

Author Publicatio
n year Dataset Methods Classifier

Highest
Accuracy

Lior Wolt Tal
Hassner, andYaniv
Taigman [1]

20tl LFW LBP

Gabor (Cl)

TPLBP
FPLBP
SIFT

SVM 67.82%
62.81%
6890%
68.20%
68.70%

Savvides .M,
Abiantun, Heo, Park,
Xie, Vijayakumar,
B.V.K. I8I

2006 FRGC-2 Eye Region SVM 83.s0%

G. Hua and A.
Akbarzadeh [13]

2009 LFW

Yale
ORL
PIE
AR

Part Based
Face
Representatrbn

Robust
Elastic and
Partial
Matching
Metric

60%
90.6  +  3 .1%
99.4 + 0.9y,
98.6 + 0.2%
81.04%

Table 3: Feature based face recoqnition methods

face

2.1 LBP and LTP

Local Binary Pattem (LBP) [1a] is an n-bit binary code at a pixel, c, in a
gray scale image is generated by Equation 1, which compares c's intensity with
that of its n neighbors. These neighbors are located at uniform distances on a
circle centered at c with radius r:
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able 4: H d rec ltlon methods

Author Publicatio
n year

Dataset Methods Classifier
Highest

Accuracy

Lior Wolf, Tal
Hassner, and Yaniv
Taigman []

2011 LFW LBP +
Gabor(Cl)
+TPLBP +
FPLBP

SVM 10.62%

Lior Woli Tal
Hassner, and Yaniv
Taigman []

2011 LFW LBP + Gabor
(c1)+ TPLBP
+
FPLBP+ SIFT

SVM 71.93%

Sawides .M,
Abiantun, Heo,Park,
Xie, Vijayakumar,
B.V.K. f8 l

2006 FRGC.2 KCFA and
Eye Region

SVM 90%
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t.htPn.,.(x,y,) : Il;t q@t - U)2! , q(a) = [t ,rt["i*=rr2r,
wfrere (x*y") isthepixel  co-ordinate of c,g,andgt aretheintensit iesof cand
tlre /"' neighboring pixel, respectively. The LBP codes can represent texlets such
as cdgc- corncr and line-end.
An l.llP is defined as uniform local binary pattern (ULBP) if there are at most
two bit transitions in its binary equivalent [4]. In other words, for a uniform
pattern, the value of U(.) in Equation 2 canbe at most 2:

u(LBPn,,.(x,,t)) = lq(s"-, - Q) - q@o - O)l + ZT:tlq@t - 9) -
q(sr' - s)l?)

For example, l l l000l l  is a uniform pattern, whi le l l l0 l0l l  is not.  When
unilbrrnity is taken into consideration, all the non-uniform patterns are
accumulated in a single bin during histogram formation. With n = 2,there are 58
diffcrcnt unifonn patterns, and hence the histogram will contain 59 bins in total.
Loca! T'ernary Pattern (LTP) [4] mainly follows the same spirit of LBP. The key
di erence is that it introduces a new bit to manage the intensity fluctuations.
'l'hus, 

L'i'P becomes a ternary code at a pixel c, which is generated by Equation
1 '

L'l'Pn,,(x",y.) : Xi=o' q(gt * 9,)31 , q(ot : llt 
tiX'2""O,

(0 otherwise
Herc. the value of a is set to -t. To reduce the size of the feature vector, an LTP
code is usually split into two binary codes (upper pattern and lower pattem). For
an image, two histograms are built separately for the two types of codes to
represent the feature vector of that image. Tan et al. [ ] also performed some
preprocessing before the code generation, such as Difference of Gaussian ltering
(DoG) ltering, gamma correction, illumination normalization and'masking.

2.2 ?-aee rccognition approaches
iri holistic bascd approaches the features of the entire face is extracted and

used as a single vector for classiffication. In this approach, the face is usually
divided to a number of non-zero blocks. Di erent types of features such as: Gabor
jct. [,BI], L'l-l], etc. are extracted and used as a whole for veri cation and/or
recognition purposes. Among the holistic approaches, Eigenfacell|f and Fisher-

/itce.s | 16, l7l, LBPI2, 31, LTP [4] based face recongition produced competitive
rcsults.

ilecently Wright et. al. [2], proposed a new approach named 'Sparse

Representation-based Classi cation (SRC)', which is based on the compressed
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sensing theory [18]. This approach uses sparse features for recognition, and
thereby can better handle occulation. Among the recent feature based
approaches, authors in [7] proposed a scalable face matching algorithm capable

ofdealing with faces subject to several concurrent and uncontrolled factors, such
as variations in pose, expression, illumination, as well as scale and misalignment
problems.

Feature based approaches use local face-features such as eyes, nose, mouth,

chin and head outline. These features can be used to uniquely identify the
individuals. Methods described in [9, 13] present fearute based approaches.
However, the major challenge in feature based approach is that the recognition
process is generally e ected by the effor-proneness of the features. This is

because, most of the times it is di cult to identifu the exact fuducial points on a
face. Hybrid approach is a combination of holistic and feature based approaches.
The hybrid approaches use both local features and the whole face region to
recognize a face. Authors in [20] proposed an approach to automatic face
recognition. A new framework for extracting facial features based on the bag of
words method has been proposed in l2l) and applied to face and facial
expression recognition.

Table 1, 2, 3 and 4 presents a comparative study on the state of the art
algorithms for face recognition and veri cation. It can be observed from the tables
that the results of almost all face recognition or veri cation approaches degrade
when using challenging real life data sets compared to the performance using

datasets from controlled environments. Developing a descriptor worthy of

overcoming hardles imposed by real life images is a challenging and interesting

area of research; and this is the challenge we address in this paper. Furthermore,
we choose holistic LBP-based based method, as long as it is light weight and
produce competitive accuracies.

3 ADAPTIVE LOCAL TERNARY PATTERN (ALTP)

In general a feature based holistic face verification system consist of three
parts: face detection, feature extraction andfeature grouping and classification.
This process is summarized in Figure 1. We adapted a similar process for our
research.

3.1 Feature Extraction
Human eye cannot distinguish intensity variation on the surface of an ob-

ject beyond a constant contrast difference, even though human can recognize it
well. This property is known as Weber's law. The Weber's law is described
. A I
llV- = l(

Journal ofEngineering and Technology Vol. 11,201358
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Figure 1: The overview of full face verification system

-- 
3 0.02 0.34 t{tr O**r*a,*o'tt 0"t{ 0.i6 0't8 0'2

Figure 2: Change ofconstant value vs accuracy rate

where A1 is a noticeable difference for discrimination, 1 represents the initial

stimulus intensity and k remains constant despite variations in the 1 term.

Inspired by the human vision system we assume that a xed amount of intensity

variation is not necessary to identify an object. Thus, while calculating the di

erence between the center pixel intensity (x") to its neighbors (.r;) (in case of LBP
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i lnd i is variants). this A/ can be considered as lx1 -- xrland /can be considered as

!'.xploit irrs. t lre aforernentioned forrnulation we develop our ALTP, where the
di crcrrcc lx; - x. lpotentially produces an important texture if the value is signi
carrtlr '  lalge. Norry the issue is to detemine what value of the difference lx; * xrl
is  s isn i i lcant .  lnstead of  us ing xed threshold,  we c la im that  th is  threshold is
de lreirdent orr the pixel intensity. This leads to an adaptive process of threshold

calcrr ia t ior r  obta ined by (x ,  x  k) in  our  proposal ,

i:<ir rnacirir ie vision. we adapt the notation y for constant k. We

e i r i l r i r - ie  a i i r  r ie tcnninc th is  value of  y  in  our  exper iments.  The threshold

vai i rccaic i i ia l ior i  is  prcsented equat ion (a) .  This  y  is  obta ined f rom Figure 2.

L * ( x r ) :  x r x  y ( 4 )

! j i r lLr rc  2 p leserr ts  a l i r re graph reaching to the peak value of  face recogni t ion

accuracy us ing y:0.1.  Fur ther  to reduce the impact  of  random noise we

calcrriatc rnedian (t*./x)) of the lx1 -x. l differences, and use that with t,,.(x,).
' l i rLrs 

a i l r rcs l ro ld (4)  lbr  p ixe l  i  is  obta ined by equat ion (5) ,  where a + P :1.

!ri: ' .Ll: 'c . i pleserrts the texture-coded images using different thresholds.

t1Q) -  (a x  t^uaQ.))  + ( f  x  rw( l ) )  (5)

Figure 3: Images of LBP varients with different threshold value
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3.2 Feature Classification
Suppose we have training image set z with m elements. Each element

P e t Q 1,......,m consist of a tuple{P ,P ,Qj where P and P are the

face images, and0i is a boolean decision setto true if P and P are the faces of

the same person, and false otherwise. We apply Algorithm I to produce a

classification-feature vector for face verification.

Algorithm I Classifi cation-feature generation

Input: Image pair {P1, Pp}
Output: Classification-feature vector V

Begin
Step 1. Divide P1 and Ps into n blocks B,(P), B,(Pil respectively for
i :  I  , . . . . , n
Step 2. Calculate histograms H,(P), H,(Pil for each block B;(P), B,(P")
respectively using ALTP, for : 1,....,n

Step 3. Calculate the square-root of2 distances between histograms Ht(P)
and H1@s)ft:I,....,n) to obtain classification-feature vector V of lengfb, n.
End

We have feature vectors Vl for each P e t and the respective classification

information Qi for j L, ... ...,ffi This is gives us a set { containing tuples {V ,Qi

for the matched and unmatched pairs of r . This set f is used to train a Support

Vector Machine (SVM) l22l for classifying V1s in accordance with 0; for

j  1 , . . . . . . , f f i

The test data comprises of a pair of images {Qn, Qu}. We used Algorithm 1

on these images to produce classification-feature vector U . We use the SVM

trained on{ to classifyu and produce boolean decisiono describing whether Q1
and Q6 belong to the same person or not.

EXPERIMENTAL RESULTS
In this section, we present comprehensive experimental evaluation of the

proposed method using Labeled Faces in the Wild (LFW) [6] dataset for studying
face verification in unconstrained environments and compared our results with
previous approaches.

In the dataset there are two parts: View I for training the algorithm and
in View 2 is for calculating the performance. View 1 consists of 1100 matched
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1100 mismatched pairs of images as training data. And there are 500 matched
and mismatched pairs each comprise the test data. View 2 has 10 set of data,
each carrying 300 pairs of images. We used ten fold cross validation as suggested
in the database.

The main goal of this research is to achieve an adaptive threshold value for
generating texture feature, which is able to generate same code for same feature
for two di erent images of a person irrespective of noisy intensity uctuations and
monotonic illumination variation. For generating the code we have used n : B
and r : 2, uniform pattem for all the methods, and no preprocessing has been
performed. Table 5 presents results of the three proposed methods using LFW
dataset (View 2).

Methods for Threshold in tr'eature Extraction Accuracy in %o

Weber (r,) 74.85%
Median(t^"7) 74.67 %
ALrP (t) 7623%

Approach/lVIethod Accuracy

LTP, funneled 0.71t2 +0.0045

Eigenfaces, original [23] 0.6002 +0.0079

Nowak, originall24l 0.7245 + 0.0040
Nowak, funneled [25] 0.7393 + 0.0049
Hybrid descriptor-based, funnel ed 126l 0.7847 + 0.0051

3x3 Multi-Region Histograms (1024) l7l 0.7295 + 0.0055
Pixels,MKL, funneled [27] 0.6822 + 0.0041

ALTP, funneled 0.7623 + 0.00s6

Keeping all the parameters same we compare the proposed methods with
LTP as presented in Table 6. We observe that ALTP performs better than the
state of the art methods, except Hybrid descriptor-based, in terms of accuracy.
The Hybrid descriptor-based method, since is a hybrid method, performs more
computation to obtain performance than ALTP. Furthermore, in the original
proposal of LTP contains a series of preprocessing steps such as: Difference of
Gaussian, Gamma Correction and Contrast Equalization. We observed that using
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Table 5: Accuracy rate of proposed methods

Table 6: Some State-of-the-art Accuracy on LFW Dataset
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