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Software Defect Prediction Using Minimized
Attributes

Md. Habibur Rahman, Sadia Sharmin, Sheikh Muhammad Sarwar, Shah Mostafa Khaled,
and Mohammad Shoyaib*

Abstract—Software quality estimation requires the
identification of the number of defects that exist in a
software. A software can be represented by a set of
static code attributes and these attributes can be used
to determine the defectiveness using simple statistical
and machine learning tools. Among those attributes, all
are not equally responsible for determining whether a
software is defective or not. In this paper, we propose
an attribute selection technique to select the most
responsible attributes for building a defect prediction
model. The model is experimented for both the within
project and cross-project defect prediction using NASA
Metric datasets and Relink. We observed a significant
improvement in accuracy for both the within project
and cross-project defect prediction, which proves the
effectiveness of our proposed model.

Keywords—software defect prediction; attribute selec-
tion; software engineering.

I. INTRODUCTION

Software quality estimation and maintenance is one
of the most important steps in software development
life cycle. During the software development, there
are always limited resources (i.e. people, time, and
budget) and thus project managers face difficulties to
allocate resources properly. Finding the software bugs
and fixing them before the release is a hard task for
a software development organization. Software defect
prediction may be done using a statistical or machine
learning approach to help finding the defected parts of
the software. If the defected parts of the software are
identified, it will be helpful for the project managers
to assign the available resources properly. Moreover,
specific parts of the software can be focused to be
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tested in spite of testing the whole project reducing
the redundant testing time. So, identifying the defected
part of the software is a very important aspect of
software engineering.

In recent years, software defect prediction using
code metrics has grown much attraction in soft-
ware testing and quality assurance community [1]
[2] [3] [4]. So, a good amount of defect prediction
dataset such as NASA Metrics Data Program (MDP),
PROMISE repository, Apache dataset etc. has been de-
veloped to assist the software defect prediction. These
historical dataset is used to build a defect prediction
model using statistical and machine learning classifier.
In feature selection based software defect prediction,
a software module is said to be defective for a certain
values of those features. But all the features are not
equally responsible for the defectiveness. It is observed
that a few features are always responsible for the
defectiveness of the software module. This condition
pushed researchers to develop an approach to identify
those features and propose a defect predictor based
on those features. There has been a good amount
of work on attribute selection technique to improve
the software defect prediction performance [5] [6].
Gao et al. evaluated seven different feature ranking
techniques using five commonly used classifier algo-
rithms [7]. A Meta learner framework called WHICH
has been proposed to change the standard goal to
improve the learning capability [8]. Khoshgoftaar et
al. studied the feature selection technique considering
the learning impact of data sampling on classification
models [9]. A combination of multiple feature selec-
tion method may improve the overall defect prediction
performance. This has been studied and applied by
examining 17 different ensembles of feature rankers
[10].

Defect prediction requires a reasonable amount of
historical data for a project to train the prediction
model. But for a new project, sufficient historical
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data may not be available which makes defect pre-
diction within a project difficult. In these circum-
stances, historical data of the same types of project
may help building the prediction model. Considering
the scarcity of historical data, cross-project defect
prediction techniques have been a great interest for
the software defect prediction researchers. In [11],
Zimmermann et al. mentioned cross project defect
prediction as a serious problem and also concluded
that using projects of same domain (i.e. web browser)
and different companies (i.e. Mozilla/Google) have
a very poor prediction performance. Rahman et al.
concludes that cross-project defect prediction gives
similar result relatively with within project prediction
or at least not worse than that [12]. In [13], Peters
et al. assesses the performance of cross-project defect
prediction based on peters filter with the Burak filter
which is used within company prediction. This shows
an improved performance for cross-company defect
prediction. Nam et al. [12] applied a state-of-the-art
learning approach, which makes the source and target
projects similar. They performed a data preprocessing
technique and proposed a novel approach called TCA+
by defining five rules to improve the prediction perfor-
mance. It is observed that the approach has a signifi-
cant improvement in defect prediction performance.

In this paper we propose a defect prediction tech-
nique where we find out the most responsible attributes
for the defectiveness of the software code. This task
has been conducted for both the within project and
cross project defect prediction. In within project de-
fect prediction, we used two measurement scales to
calculate the prediction accuracy. So, when we build
defect predictor and calculate prediction accuracy, we
consider it for both the balance and AUC measurement
scales. We have implemented our attribute selection
process using both the measurement scales and found
improvement for both the cases using five common
classifiers in respect of five resultant measurement
scales such as balance, precision, recall, f-measure and
AUC. In cross project defect prediction, as we know
the test and train data come from different project,
we have performed our attribute selection process
for the training dataset. After getting the best set of
attributes, we re-sample our train and test data set only
with the best set of attributes and performed defect
prediction. We found a reasonable improvement in
cross-project defect prediction in respect to a recent
work conducted by [14]. The within project defect

prediction was conducted with five dataset from NASA
MDP repository and the cross project defect prediction
was performed by three dataset provided by ReLink.

The rest of the paper is organized as follows. Sec-
tion II overviews the background and related work for
both within project and cross-project defect prediction.
Section III describes the methodology of the proposed
technique while section IV represents the experimental
design. A detailed discussion on the experiment has
been given in section IV and section VI concludes the
research work.

II. BACKGROUND AND RELATED WORK

In software defect prediction a good number of
researches have been conducted by the data mining
and machine learning community. All the researches
have been accomplished using some of the publicly
available datasets and classified by a list of sta-
tistical and machine learning classifier. The mostly
used dataset are from NASA MDP Repository and
PROMISE Data Repository. Sometimes data prepro-
cessing has been needed to make the test and train
data similar especially for cross-project defect pre-
diction. Wang et al. conducted research on determin-
ing the minimum number of attributes needed for
the software defect prediction. They showed that a
proper metrics selection technique like threshold based
feature selection can sort out the necessary metrics
related to defect prediction through eliminating the
additional one. Five versions of the proposed selection
technique have been experimented creating different
size of metric subsets to assess their effectiveness
at the time of defect prediction. The versions are
specified by five performance metrics- Mutual Infor-
mation (MI), Kolmogorov-Smirnov (KS), Deviance
(DV), Area under the ROC (Receiver Operating Char-
acteristic) Curve (AUC), and Area under the Precision-
Recall Curve (PRC). The result of the study reveals
that only three metrics are enough to build an effective
predictor and the removal of 98.5% metrics enhances
the performance of the prediction model. However, the
experiments can be extended by using more datasets
and classifiers in order to strengthen their classification
[4].

In [15], Gray et al. discussed on the publicly avail-
able NASA Metrics Data Program datasets and their
misuse in automated software defect prediction. In this
paper, the authors explained the importance of data
analysis before training the classifier and conducted
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a proper cleaning process for 13 sets of original
NASA metrics dataset. Their concern arises due to
the presence of identical data both in training and
testing sets as a result of data replication. The cleaning
method consists of five stages including the dele-
tion of constant and repeated attributes, replacing the
missing values, enforcing integrity of domain specific
expertise and removing redundant and inconsistent
instances. The findings of this experiment reveals that
the processed datasets become 6 − 90% less from
their original size after cleaning and it improves the
accuracy of defect prediction. According to their study,
a possible solution of avoiding repeated data point is to
record lower level metrics as it will help to minimize
the probability of modules having similar metrics [16].

Gao et al. investigated a feature selection technique
for choosing software metrics for defect prediction in
order to maintain the efficiency and quality of defect
prediction [7]. This paper proposed a technique called
hybrid attribute selection approach consisting of both
feature ranking and feature subset selection. In this
experiment, five feature ranking techniques including
Chi-square (CS), Information Gain (IG), Gain Ratio
(GR), KolmogorovSmirnov statistic (KS), two forms
of the Relief Algorithm (RLF), and Symmetrical Un-
certainty (SU) were studied along with four feature
subset selection algorithms: Exhaustive Search (ES),
Heuristic Search (HS), and Automatic Hybrid Search
(AHS) and no subset selection. The hybrid method first
categorizes the important attributes and reduces the
search space using a search algorithm applied in fea-
ture ranking approach. Then it chooses the subsets of
metrics through features subset selection approaches.
It is found that AHS is better than other search
algorithm in the context of choosing attributes and the
removal of 85% metrics can enhance the performance
of the prediction model in some cases [7]. He et al.
investigated the effectiveness of different predictors
on a simplified metrics set for predicting defective
modules of the software [3]. Also, it finds out the rules
of selecting training datasets, classifiers and metrics
subsets properly for defect prediction on a project. The
study was conducted for both within-project and cross-
project defect prediction on the 34 releases of 10 open-
source projects of PROMISE repository. The authors
proposed a method for simplifying the metric sets by
filtering them using feature ranking techniques and
analyzed the performance of the predictors with these
metric sets. The findings of the experiment shows that

the predictors with minimal metric sets provide better
result and simple classifiers like Nave Bayes perform
well in this context [3]. A micro interaction metrics
based software defect prediction has been proposed
by Lee et al. in [17].

In recent times, research in cross-project defect
prediction has been increased rapidly [11] [13] [14].
In [11], the authors indicated that cross-project defect
prediction is a serious challenge and they conducted
their defect prediction model on a large scale project.
They tried to identify the factors that can influence the
accuracy of cross-project defect prediction. In [14],
the authors studied to transfer the defect learning
between train and test dataset using data normalization
techniques. They also proposed five rules to transfer
the defect learning and showed acceptable prediction
accuracy. In cross-project prediction model, data sim-
ilarity between the test and train dataset is a big
challenge which has been studied by [14] [18] [12].

In our research work, there are two types of chal-
lenges to be addressed for both the within project
and cross project defect prediction. There have been
numerous ways to find the most responsible attributes
for the defectiveness of the software. There are such
other methods discussed in the above literature review
which gives a reasonable improvement in the predic-
tion accuracy. The statistical and machine learning
classifiers are always being used in different ways
to improve the defect prediction performance. The
selection of attributes in parallel with the selection
of a good classifier is a big challenge for the defect
prediction research community. On the other hand
cross-project defect prediction is itself a big challenge
in recent times as it is yet to be explored in a broad
domain. Data preprocessing is a very nice way to
improve the defect prediction result and thus being
a preprocessing technique, introducing attribute selec-
tion for cross project defect prediction is a challenge
to be addressed.

To evaluate the defect prediction performances, a
well-accepted metric is proposed in [19] where they
used probability of detection (pd) and probability of
false alarm (pf). Formal definition for (pd) and (pf)
are given in Eq. (1) and (2) where the definition of A,
B, C and D can be obtained from the Table 1. Table
1 presents the confusion matrix of a problem where
A, B, C, and D denote True Positive, False Positive,
False Negative and True Negative respectively.
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TABLE 1: Confusion Matrix

Estimated
Real Defective Non Defective

Defective A C
Non Defective B D

Algorithm 1 Defect Prediction Model
Input: Set of attributes A = a1, a2, .........., an
Output: Prediction result and best set of attributes for

defect prediction A = a1, a2, .........., aj
1: Begin
2: Select Pair wise combinations of attributes from

A and store the accuracy of defect prediction for
each pair

3: Create a sorted attribute list P from the set of pair-
wise combinations based on an accuracy metric

4: Select the candidate attributes list Ac based on
their frequency in P

5: Find the best set of attributes P for defect predic-
tion from Ac

6: End

pd =
A

A+ C
(1)

pf =
B

B +D
(2)

These pd and pf are then combined to present a
third performance measure called balance. Balance is
used to choose the optimal (pd, pf ) pairs. The equation
for computing the balance according to [19] is shown
below using equation (3).

balance = 1−

√
(1− pd)2 + (0− pf)2

2
(3)

As a continuation of the defect prediction research,
we propose an attribute selection process to select the
best set of attributes to use as the simplified defect
prediction data for both the within project and cross-
project defect prediction. The considered attributes
for our experiments has been given in Table 2. The
experimental result shows that our prediction model
is effective to improve the defect prediction accuracy.

Algorithm 2 Generating and Selecting Potential Com-
binations of Pairwise Attributes
Input: Set of attributes A = {a1, a2, ..., an}

1: set of classes C = {defected, notdefected}
2: Dataset D : A× C and Classifier γ
3: δ = a threshold value for selecting potential attribute pairs

Output: Sorted combination of paired attributes list P
4: Begin
5: Ptemp ← {(u, v) : u ∈ Aandu /∈ v}
6: B ← ϕ
7: for each (u, v) ∈ Ptemp do
8: di ←all accumulated values from dataset D for attribute

pair (u, v)
9: Classify di using γ

10: Evaluate pd, pf, balance
11: Bi ← {pd, pf, balance}
12: B ← B ∪Bi

13: end for
14: Sort Ptemp in decreasing order of balance using B
15: Return P̄ ⊂ Ptemp,Where

∣∣P̄ ∣∣ = kand∀x ∈
P̄ , balance(x) ≥ δ

16: End

III. METHODOLOGY

This paper proposes an attribute selection process
for software defect prediction considering the mutual
effect of all pairs of attributes on the performance of
a classifier. The selected attributes will be used for
within project and cross project defect prediction. In
within project defect prediction, a certain portion of
the data will be used for training the model and rest
of the data will be used for testing. On the other hand,
there will be two different datasets in cross project
defect prediction for training and testing. The process
of selecting best set of attributes for cross project
defect prediction contains the following sequential
steps:

1) Generating and selecting potential combinations
of paired attributes

2) Selecting candidate attributes
3) Finding the best set of attributes
4) Cross Project defect prediction
Algorithm 1 presents the overall process of the

proposed defect prediction method.
1) Generate and select potential combinations of

paired attributes
Algorithm 2 gives us an overview of generat-
ing the sorted pairwise attribute list based on
their corresponding balance. Here, a pair wise
attribute list is generated using all the attributes
of the dataset. If there are n number of attributes
then the number of pairs will be n(n−1)

2 . All
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TABLE 2: Software Code Attributes

No. Attribute Name Description
1 loc blank Number of blank lines

2 branch count Number of all possible decision paths

3 call pairs The depth of the calling of a function

4 loc code and comment Number of lines of code and comments.

5 loc comments Number of lines of comments

6 condition count Number of conditions of a code module

7 cyclomatic complexity Measure of number of literally independent paths.

8 cyclomatic density Ratio between cyclomatic complexity and system size

9 decision count Number of possible decision to be taken of a code

10 decision density Ratio between total decision count and total modules.

11 design complexity Amount of interactions between modules in system

12 design density Ratio of design complexity and system size

13 edge count Number of edges of a source code control flow graph

14 essential complexity Degree of a module contains unstructured constructs.

15 essential density Ratio between essential complexity and system size

16 loc executable Lines of code responsible for the program execution

17 parameter count Number of parameter to a function/method

18 halstead content language-independent measure of algo. complexity.

19 halstead difficulty Measure the program’s ability to be comprehended

20 halstead effort Estimated mental effort to develop the program

21 halstead error est Calculates the number of errors in a program

22 halstead length Total number of operator and operand occurrences

23 halstead level Ratio between normal and compact implementation

24 halstead program time proportional to programming effort

25 halstead volume No. of Bits required to store the abstracted program

26 maintenance severity How difficult it is to maintain a module.

27 node count Number of nodes of a programs control flow graph

28 num operands Total number of operands present

29 num operator Total number of operators present

30 num unique operands Number of distinct operands

31 num unique operators Number of distinct operators

32 number of lines Total number of lines of a programs source code

33 percent comment Percentage of comments of a programs source code

34 loc total Total number of lines of code

35 is defective defect labels (Y/N, True/False)

the paired attributes are used to calculate the
balance using a simple classifier and those are
sorted in decreasing order of balance. Then in
the final list of potential attributes those pairs are
retained who have balance great than or equal
to a threshold . This indicates a benchmark
value of the predicted balance to filter those

attribute pairs which are hardly responsible for
the defectiveness of the software. The value can
be heuristically selected based on the nature of
the dataset and measurement scale. This list will
be used to select the candidate attribute list.

2) Selecting Candidate Attributes From algo-
rithm 2 we get a sorted pairwise potential at-
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Algorithm 3 Selecting Candidate Attributes
Input: Sorted paired attributes list P̄ = {P1, P2, ..., Pk}
Output: Attribute list A+ of attributes along with their frequen-

cies calculated from ā
1: Begin
2: A+ ← ϕ
3: for each Pi ∈ P do
4: for each aj ∈ Pi do
5: increment frequency of aj , f(aj) by one
6: A+ ← A+ ∪ {aj , faj}
7: end for
8: end for
9: Sort A+ on decreasing order of faj return it as

candidateattributelist
10: End

tribute list, which can be further exploited to
unearth the final set of attributes for defect pre-
diction. As the list is a result of the combinations
of n attributes, there are some attributes, which
exist in multiple pairs. In Algorithm 3, we count
the frequency of the occurrences of the attributes
listed in P̄ and generate a list A+ containing a
collection of <attribute, frequency> pairs. Then
A+ is sorted in decreasing order of frequency
and used in further processing to find the best
set of attributes. For our further usage we define
sorted list A+ as candidate attribute list.

3) Finding the best set of Attributes In Algorithm
4, we select the best set of attributes from
the candidate attribute list A+. The best set of
attribute is used to calculate the final balance
value for a specific dataset using a simple clas-
sifier. From the candidate attribute list the first
attribute is selected as the final attribute and
added in a list named best set of attributes. The
desired balance is calculated using this best set
of attributes and stored for further experiment.
The second attribute from the candidate attribute
list is then added in the best set of attributes
and again calculate the balance. If the current
balance is better than the previous balance, the
recently added attribute is kept in the final list or
the attribute is discarded. This process continues
till the last attribute of the candidate attribute
list. Then we get the final set of attributes from
the best set of attributes list which is used to
calculate the final balance.

4) Cross project defect prediction
In Cross-project defect prediction, the most im-
portant thing is the training and test dataset.

Algorithm 4 Finding the best set of attributes

Input: Set of decreasing order sorted attributes A+

1: Set of classes C = {defected, notdefected}
2: Dataset D : A× C and Classifier γ

Output: Best set of attributes F for defect prediction with cal-
culated pd, pf and balance

3: Begin
4: balance← 0
5: for each i = 1, ..

∣∣Ā+
∣∣ do

6: F ← F ∪ {ai}
7: tempBalance← balancecalculatedusingFandγ
8: if tempBalance ≥ balance then
9: balance← tempBalance

10: else
11: F ← F\{ai}
12: end if
13: end for
14: Return the set F ,and calculatepd, pf and balanceusingF
15: End

Algorithm 5 Cross Project Defect Prediction
Input: Data set D1 and D2 and best set of attributes F
Output: Dtrain and Dtest with the best set of attributes F and

f-measure on Dtest

1: Begin
2: Attribute set AD1 = a1, a2, ..., an obtained from data set

D1

3: Dtrain ← AD1∩ F (with all instances from D1)
4: Attribute set AD2 = a1, a2, ..., am obtained from data set

D2

5: Select Dtest ∈ AD2∩ F (with all instances from D2)
6: Use Dtest as training instances
7: Calculate pd and pf using Dtest

8: Calculate f-measure
9: End

In Algorithm 5 we incorporated our attribute
selection technique in cross-project defect pre-
diction. The attribute selection process is used
for the train dataset Dtrain and from this we
get a best set of attribute list. The train and test
dataset Dtrain and Dtest are then simplified by
the selected attributes to make the dimensions of
the datasets same. Now, the defect predictor is
trained using Dtrainand the prediction accuracy
is calculated using Dtest. The algorithm for
cross project defect prediction using the best set
of attributes is shown in Algorithm 5.

IV. EXPERIMENTAL DESIGN

In our defect prediction model, we used five pub-
licly available datasets from NASA MDP Repository
for within project prediction and ReLink datasets for
cross project prediction. Most of the researchers de-
veloping defect prediction models fall short of datasets
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TABLE 3: Dataset Overview

Dataset
Name

Software Type Language

Num-
ber of

At-
tributes

Num-
ber of

In-
stances

De-
fected
data
(%)

CM1 NASA Space Craft Instrument C 38 498 9.83%
PC3 Flight software for earth orbiting satellite C 38 1125 12.44%
PC4 Flight software for earth orbiting satellite C 38 1399 12.72%

MW1 A zero gravity experiment related to combustion C++ 37 403 7.69%
KC3 Storage management for ground data Java 39 458 9%

TABLE 4: CLASSIFIER INTRODUCTION

Classifier Name Type Description

Bayesian Network Statistical
Consists of a multivariate linear regression model and

heuristics to shrink the number of features
Nave Bayes Machine Learning One of the simplest classifier based on conditional probability

Logistic Regression Statistical
Probabilistic statistical regression model, fits data to a logistic

curve

Decision Tree Machine Learning
Decision tree breaks down the dataset into several subsets
based on information gain and builds the classification or

regression model in a tree structure

Random Forest Machine Learning
Random forest gives classification decision based on the votes
from its individual tress, while each tree is grown based on a

set of rules

to compare their prediction result as companies keep
their software dataset private. As a consequence, we
had to use the publicly available benchmark datasets
for our experiments alike other researchers. A brief
overview of the datasets is depicted in Table 3.
Bayesian network and Nave bayes are widely used
classifier and proved to be effective for software de-
fect prediction [20] [21]. In logistic regression binary
logistic model is used for the prediction purpose based
on one or more predictor attributes which is a good
rationale for choosing logistic regression for our defect
prediction model [22]. On the other hand decision
tree has been studied as a good classifier due to its
entropy and information gain which is important for
our feature selection technique [23]. A brief intro-
duction of the classifiers is given in Table 4. We
have represented our results using balance, f-measure,
precision, recall and AUC (Area under ROC Curve)
measurement scale. Table 5 gives an introduction to
the measurement scales.

During the experimental setup, we prepared pair-
wise attribute list using the attributes of a dataset.

So, if there are n numbers of attributes in a dataset
then we have n(n−1)

2 number of attribute pairs if
we use the classical rule for finding the number of
combinations. We then calculated the balance using
those attribute pairs by a 10-fold cross validation
method. After that we had the pairwise attribute list
and their corresponding balances. The list is then
sorted in decreasing order of balance. As a result of
the combination of the attributes, an attribute exists in
several pairs and thus the list is again sorted based on
the frequency of the attributes. We named the list as
candidate attribute list and the set of final selected
attributes was constructed from this list. From the
candidate attribute list we picked the first attribute and
add it to another list named selected attribute list and
calculate balance using attributes from this list. Thus
we kept adding attributes from candidate attribute list
to selected attribute list unless adding an attribute
would not decrease the balance obtained using the
already developed selected attribute list. This process
continues until the end of the candidate attribute list.
Finally, the selected attribute list is used as the final
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TABLE 5: PERFORMANCE MEASUREMENT SCALES

Measurement Scale Description

Balance balance = 1−
√

(1−pd)2+(0−pf)2

2

F-Measure 2×precision×recall
precision+recall

Precision TP
TP+FP

Recall TP
TP+FN

AUC Area under the ROC (Receiver Operating Characteristic) curve

TABLE 6: Result with balance and AUC filtering

Classifier
Experimental Phase

Measurement Scale
Balance Precision Recall F-measure AUC

Bayesian Network
Before 0.648 0.33 0.621 0.4 0.746
Balance Filtering 0.672 0.419 0.607 0.442 0.764
AUC Filtering 0.66 0.445 0.582 0.45 0.803

Naive Bayes
Before 0.547 0.341 0.51 0.341 0.737
Balance Filtering 0.676 0.432 0.616 0.456 0.756
AUC Filtering 0.557 0.428 0.408 0.36 0.84

Logistic Regression
Before 0.495 0.48 0.297 0.353 0.705
Balance Filtering 0.502 0.679 0.297 0.425 0.778
AUC Filtering 0.413 0.561 0.171 0.312 0.83

Decision Tree
Before 0.527 0.402 0.347 0.371 0.629
Balance Filtering 0.531 0.569 0.342 0.426 0.702
AUC Filtering 0.489 0.713 0.282 0.368 0.761

Random Forrest
Before 0.47 0.366 0.26 0.334 0.71
Balance Filtering 0.619 0.57 0.471 0.499 0.776
AUC Filtering 0.501 0.48 0.303 0.321 0.806

list of attributes to calculate the balance, which is
considered as the measurement value of the defect
predictor. The same process is repeated for another
test using AUC measurement scale instead of balance.
In Cross project defect prediction we perform the
attribute selection process for the train dataset and
with the selected attributes we prepare the test and
train dataset. The training and test dataset is then used
for the defect prediction.

V. EXPERIMENTAL RESULT AND DISCUSSION

As mentioned in the experimental design section,
we used five datasets from NASA MDP Reposi-

tory for within project defect prediction and three
other datasets from Relink for cross-project defect
prediction. We presented the experimental result by
averaging the five results of the within project defect
dataset based on five classifiers. For within project
prediction, we have compared the results between
before introducing the attribute selection process and
after using the selected attributes. We measured the
result of every measurement scale by two type of
filtering where the filtering responsible for sorting the
attribute pair. Table 6 represents the results for both
the balance and AUC filtering. The result gives us a
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TABLE 7: RESULT FOR CROSS PROJECT DEFECT PREDICITON

Source => Target Nam et. al [14]
Measurement Scale

f-score precision recall balance AUC
Safe => Apache 0.64 0.711 0.711 0.711 0.711 0.755
ZXing=>Apache 0.72 0.609 0.719 0.644 0.534 0.638
Apache=>Safe 0.72 0.738 0.832 0.768 0.582 0.739
ZXing=>Safe 0.64 0.699 0.738 0.696 0.701 0.727
Apache=>ZXing 0.49 0.599 0.612 0.697 0.323 0.498
Safe=>ZXing 0.43 0.626 0.628 0.689 0.381 0.641
Average 0.61 0.664 0.707 0.701 0.539 0.666

very good improvement in the prediction performance
after using our attribute selection process.

In case of cross project defect prediction we mea-
sured the result by calculating the f-measure which
is used in [14] to compare the result with TCA
(Transfer Component Analysis). The three dataset
found in ReLink [21] are Apache, Zxing and Safe
and every dataset contains the same number and
type of attributes. So, we take the experiment for
Safe=>Apache, Zxing=>Apache, Apache=>Safe,
Zxing=>Safe, Apache=>Zxing and Safe=>Zxing
where the first part of => is for training and the
second part is for testing the defect predictor. The
result is compared in Table 7 with some other perfor-
mance measurement scale such as balance, precision,
recall and AUC. As shown in the table result improves
in four cases comparing with TCA+. For example
f-measure for Zxing=>Safe in our approach (0.70)
is better than TCA+ (0.64). We have experimented
the result with Bayesian Network classifier where
the TCA+ authors used logistic regression for their
experiment. We observed that Bayesian Network gives
a better result in our attribute selection approach.

VI. CONCLUSION

Attribute selection can significantly improve the
performance of a defect prediction model and it has
been shown in several researches. Our proposed at-
tribute selection algorithm has been developed con-
cerning the joint influence of paired attributes on the
performance of defect prediction model. In this context
performance is measured using two classic metrics
balance and AUC. Specifically, we show that our
proposed method is suitable for cross project defect
prediction, which is a serious and challenging issue in

the defect prediction community. However, we believe
that the accuracy of our method can be improved if
we create a dynamic combination of attributes, i.e.
forming combination of different number of attributes
for our attribute selection process.
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