IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 13, NO. 1, DECEMBER 2016 13

A comprehensive survey of code offloading
mechanisms for mobile cloud computing

Mohammad Erfan* , Bidoura Ahmad Hridita, Mohammad Shoyaib, and Md. Shariful Islam

Abstract—Resources, battery lifetime and storage ca-
pabilities of mobile devices are affected by the compute
intensive, resource intensive or energy drain applica-
tions. These limitations of the mobile devices may be
mitigated with the help of cloud computing by delegating
the energy drain or computing intensive tasks to more
resourceful servers and receiving the result from the
server. This process (a.k.a code offloading) helps to
increase performance and reduce energy consumption.
We present a detailed survey of the state of the art code
offloading mechanisms for mobile based applications to
better understand the domain of code offloading. The
paper provides a high level design architecture, proce-
dure for code offloading and presents a comparison of
existing mechanisms based on the level of execution, level
of profiling, security requirements, code profiler and
offloading adaptation context. This paper also highlights
major research challenges related to code offloading
and provide recommendations to take better decision on
code offloading in order to build more powerful mobile
applications.

I. INTRODUCTION

The mobile applications development and deploy-
ment area are expanded by most exciting technology
Mobile Cloud Computing (MCC) with techniques
such as code offloading. However, mobile devices
have limited battery life, limited storage, inconsistent
network bandwidth which make it hard to execute
compute intensive and energy drain applications on the
mobile devices. Mobile devices are gaining popularity
in todays life because of its small size, high com-
puting capabilities, communication capabilities and
less carrying overhead insignificant of place and time.
The limitations of the mobile devices can be mit-
igated by migrating either application or part of it

* Corresponding author.

Mohammad Erfan, Bidoura Ahmad Hridita, Mohammad Shoy-
aib, and Md. Shariful Islam are with the Institute of Information
Technology, University of Dhaka, Bangladesh. e-mail: {bit0326,
bit0316, shoyaib, shariful} @iit.du.ac.bd.

Manuscript received January 25, 2016; revised March 03, 2016.

to remote computing device to gain benefits using
MCC. MCC executes high computational or energy
hungry applications to the cloud which allows the
mobile users to use the cloud as infrastructure as a
service (IAAS), software as a service (SAAS) and
platform as a service (PAAS) at low cost and on
demand fashion. Cloud computing makes it possible
to augment mobile devices capabilities in terms of
energy, storage, computation, data safety and security
[1].

Several types of mobile applications in recent days
such as image processing, voice recognition, object
recognition, translation and m-gaming etc. have lim-
iting factor to execute in mobile devices which intro-
duce high computation problems, energy consumption
and huge execution cost [2]. These type of applications
can be executed on mobile devices by migrating huge
computational tasks to nearby servers using MCC
which is usually known as computation offloading
or code offloading. Mobile applications compute in-
tensive or energy drain methods, threads or classes
are assigned to resourceful server referred to as code
offloading for performance improvement [3], [4], in-
creasing the battery life [5] and reducing the cost of
execution. The effectiveness of an offloading system
is determined by its ability to correctly identify which
tasks are candidate for offloading and where to execute
the offloadable task either locally or remotely.

Code offloading or computation offloading mecha-
nisms consist of identifying which parts of the codes
are offloaded referred as what to offload. Different
types of environmental context such as network band-
width, server load, execution time and execution cost
for optimally taking offloading decision are referred
as when to offload. Static or dynamic decision of
code partitioning based on the resource and energy
consumption means how to offload. Identification of
the remote cloud server for the offloaded code means
where to offload. Code offloading is beneficial when
the computing device saves energy or improves per-

14 IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 13, NO. 1, DECEMBER 2016

formances; and counter-productive when the device
wastes energy for executing a task remotely rather than
locally.

The purpose of this paper is to familiarize the re-
searcher in the computation offloading research area
for mobile based applications. A comprehensive sur-
vey is performed on existing common code offloading
approaches used to make offloading decisions that
classifies the code offloading approaches: thread level,
method level, and data size level considering differ-
ent variable parameters such as network connectivity,
execution time, server load, and execution cost. This
paper serves a generic code offloading mechanism,
high level design architecture and a generic flow chart
for code offloading. The paper compares the state of
the art code offloading approaches on the basis of level
of execution, level of profiling, security requirements,
code profiling, and offloading adaptation context. This
paper also includes major findings and discussions to
take optimal offloading decisions. The paper concludes
with the open research challenges for researchers on
the field of code offloading.

The paper is organized as follows: Section 2 describes
mobile cloud computing and code offloading mecha-
nism. Section 3 describes the existing code offloading
mechanisms. Section 4 describes the comparison of
existing code offloading mechanisms to take better
decisions. Major findings on the code offloading are
described in Section 5. Section 6 describes the open
research challenges and Section 7 concludes the paper.

II. MOBILE CLOUD COMPUTING AND
CODE OFFLOADING

This section gives a brief description, architecture
and mechanism related to MCC and code offloading.
In order to provide basic understanding to the
researchers, the paper provides a generic flow chart
and a high level design for code offloading.

A. Mobile Cloud Computing

Mobile cloud computing uses the architecture of
cloud computing for computing intensive and energy
hungry applications to make it possible to execute on
the mobile. MCC helps mobile users to get ubiqui-
tous access to available resources provided by service
providers with the purpose of maximizing battery
life, data storage, inconsistent network bandwidth,
processing power and data safety. MCC removes the

limitations of mobile devices by incorporating mobile
devices with mobile computing, cloud computing and
the network technologies. It also makes it possible to
develop and execute the mobile applications at lower
cost and makes it easy for developers to acquire new
technology on demand basis.

Nowadays, mobile users want to execute PC like
applications which are resource hungry on their mobile
devices. The development of hardware technologies
make the mobile devices smaller in size and make
it capable of executing applications in mobile. Image
processing, voice recognition and m-gaming appli-
cations are executable in todays mobile device but
their energy consumption decreases battery lifetime
drastically. The cloud providers serve their services
as SAAS, TAAS and PAAS to the mobile users and
tasks result are back on to the device as displayed in
Fig. 1.

g yr I -
B &d:'?%;ﬁ:((t'))j— E
. —l"l ‘ﬁ}g’g ‘ s : _1

Cloud Services

Cloud Pravider

Fig. 1: Mobile Cloud Computing Architecture

B. Code Offloading

The process of delegating methods, classes, threads
or data which are resource intensive to the remote
system in order to improve the performance of mo-
bile device, increasing the battery life called Code
Offloading. The code offloading technique includes
to identify the offloadable part of the application for
remote execution. It takes decision by considering
the environmental context such as network bandwidth,
server load, execution time, and execution cost. The
system then partition the code statically [6], [7] or
dynamically [8]-[12] and optimally detect the offload-
able task for remote execution. Finally the mechanism
detect the remote server for seamlessly executing
the offloaded task. The remote executable methods
selected by optimazation solver are delegated to re-
mote server. The remote server may communicate to
another server for seamlessly executing the request.
After completing the application execution, the remote
server sends the computing results back to the mobile

MOHAMMAD ERFAN et al.: A SURVEY OF CODE OFFLOADING MECHANISMS FOR MOBILE CLOUD COMPUTING 15

LEC: Local Executable Code
REC: Remote Executable Code

Fig. 2: Code Offloading Mechanism

device.

Mobile applications consist of methods which require
little or more computation depending on the resource
usage of mobile devices. Methods that uses mobile
sensors, internal IO devices or sensible executable
data where re-execution hamper the actual results
are always executed locally. The rest of the methods
executed either locally or remotely based on the vari-
able parameters and remote execution saves energy or
decreases execution time.

Mobile application methods with different execution
time and energy consumption where remote executable
methods are selected by the optimization solver. The
selectable methods are delivered to the remote server
and the rest of the methods are executed on the
mobile. The remote executable tasks are executed on
the resourceful cloud and the results are sent back to
the devices. Finally the results are synchronized to the
mobile device which is depicted in Fig. 2.

At the start of the offloading process, local and remote
executable methods are initialized as local or remote
executable. Different types of variable parameters such
as network, device, server and program information
are used as input to the offloading solver to take the of-
floading decision. If offloading does not save energy or
improve performance, it executes the methods locally.
Otherwise, the device sends it to the remote resources
to completely execute the execution. The general flow
chart for code offloading framework is depicted in Fig.
3.

The state of the art code offloading framework
have same type of high level design architecture
which is displayed in Fig. 4. The code offloading
design architecture have communication controller,

Program Initialization
Profiler Information

Program
Information

Server
Information

Network
Information

Does offloading save No
energy or imp:
performance

Execute Locally

| Optimally determine or partition the code |

Iz Remote
Execution Feasible?
Yes

Results

Execution Completed

Fig. 3: Code Offloading Flowchart

Communication
Controller

Communication
Controller
Profiler

RPC

Fig. 4: High Level Design for Code Offloading

profiler and optimization solver on mobile device
where the profiler information serves as the input to
the solver. The communication controller controls the
connection between the device and server. The main
purpose of the controller is to deliver the tasks to the
server, receive the results and update the changes. The
communication manager re-executes the code locally
for any type of failures in the completeness of the

16 IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 13, NO. 1, DECEMBER 2016

Code Offloading

Thread Level

Method Level

Data Size Level

MAUI [13] _| CloneCloud [19] Odessa [22]
hinkAir [14] —| COMET [20] | | COSMOS [23]

_| Offloadable apps using SmartDiet [17] |

SmartDiet [16]

_| MCO: from concept to practice [18] |

Fig. 5: Code Offloading Categories

application. The profiler stores device, network, and
program and server information to take offloading
decision. The device profiler collects device status,
battery life and CPU usage. The network profiler
collects network bandwidth, latency information.
The program profiler stores execution time, size of
execution and energy consumption information, and
the server profiler stores server workload information.
The optimization solver is used to optimally select
the remote executable methods for an application to
maximize the performance and energy saving.

III. CODE OFFLOADING MECHANISMS

This section describes a comprehensive survey of

the existing code offloading mechanisms. There are
many research works related to the cloud computing,
but survey on specifically code offloading is limited.
The code offloading mechanisms are designed to run
the compute intensive and energy drain applications
to remote servers aiming to inflate the computation
capabilities and energy efficiency.
In code offloading, tasks can be method, class, thread
or data depending on the partitioning level. The
state of the art code offloading mechanisms can be
classified into three categories banamed method level
granularity, thread level granularity and data size
level granularity which are depicted in Fig. 5. In
the following section, the method level, thread level
and data size level code offloading mechanisms are
described followed by a comparative study.

A. Method level granularity

In code offloading, method level granularity refers
to deliver the computational or resource intensive
methods to the remote server to save CPU cycles. The
code offloading mechanism partitioned the code at
fine grain. It is difficult to execute methods remotely
that uses local devices or re-executions hamper the
actual results.

1) MAUI: Cuervo et al. [13] proposed a fine
grained code offloading system for saving energy of
mobile devices in making smartphones last longer
with code offload called MAUI. MAUI introduces
both static and dynamic decision of method level
partitioning. Initially the developers annotated the
remote executable methods as remoteable and
locally executable methods as local. The proposed
system automatically identified the remoteable and
non-remoteable methods, and then automatically
performed migration on application methods.

The MAUI network, device and program profiler data
were used by MAUI solver as input to the optimization
solver in order to identify local and remote executable
methods. The goal of the optimization solver was to
save device energy with respect to different latency.
The MAUI system solved the following 0-1 integer
linear programming using indicator variable I,

For local executable method v the value of I, is O
otherwise 1. E! and E represents energy requirement
for method v in locally and remotely respectively
and T! and 77 are time required to execute the
method v in locally and remotely respectively.The
parameters B, , and C, represent necessary data
size and energy cost for transferring states from u to v.

maximize Y, oy L XEL-Y0, e p | Tu — Io| X Cuy

such that: > _((1 IVXTY 4+ (LXTD)+
Z(U,U)EE(uu - IU|XBu,v) <L

and I, < r,,V, €V

The goal of the objective function is to maximize
the energy saving by transferring tasks remotely. The
first constraint guarantees that execution time for
a program must be within total execution time L,
and second constraint guarantees that methods that
are annotated remotely can be executed remotely.
MAUI significantly increases the energy saving of

MOHAMMAD ERFAN et al.: A SURVEY OF CODE OFFLOADING MECHANISMS FOR MOBILE CLOUD COMPUTING 17

mobile devices by considering the user mobility
and network dynamics. The MAUI system behaves
incorrectly if developers make mistakes to label a
method. The system requires expert programmers to
annotate methods for local and remote execution.
The system is not scalable with increasing number
of workloads and used serial execution of offloaded
tasks. The proposed system is evaluated on the
face recognition, gaming and voice based language
translation applications.

2) ThinkAir: Kosta et al. [14] proposed Thinkair

that enables the parallelization of method execution
using multiple Virtual Machine (VM) images for the
enhancement of performance and battery lifetime of
mobile devices. It introduces method level partition-
ing for code offloading and exploits the concept of
smartphone virtualization in the cloud. The proposed
system focuses on the elasticity and scalability of
the cloud which increases the power of mobile cloud
computing by parallelizing method execution using
different VMs.
ThinkAir provides an efficient environment to perform
on-demand resource allocation for tasks and supports
parallelism by dynamically creating, resuming and
destroying VMs in the server end whenever necessary
without affecting the performance of the application.
The system is evaluated on the N-queen puzzle, face
detection, virus scan, and image merger applications.
The limited factor is that migrated thread blocked
until the offloaded thread returns which reduces the
concurrency of their work.

3) Cuckoo: Kemp et al. [15] proposed an offloading
framework for Android named Cuckoo, including a
runtime system, a resource manager application for
mobile device user and a programming model for
developers. Herein, the runtime system dynamically
identifies which methods are executed locally and
which are remotely. The resource manager stores the
remote resource information. The programming model
supports local and remote execution, bundles the local
and remote code in a single package. The model helps
to discover remote resources for application execution
including laptops, home servers and cloud resources.
In Cuckoo, additional communication is required be-
cause same code execute both locally and remotely
that consumes energy and increases the execution
time. The Cuckoo system intercepts all method calls
and only check the accessibility of the remote re-

sources for selecting offloadable method which is not
enough.

4) Offloadable Apps using SmartDiet: SmartDiet

[16] tasks are to identify the limiting factors
that reduce offloading opportunities. It is used to
calculate the energy-saving potential of offloading
communication-related tasks. The system uses method
level application execution partitioning framework
called ThinkAir for partitioning the application.
There are many constraints that limit the remote
execution of offloadable method which makes it
difficult to manually identify. SmartDiet is the
proposed toolkit for identifying such constraints
automatically. The main purpose of the paper is to
provide suggestion of code modifications for removing
the identifiable constraints. The system is used for
evaluating the energy-efficiency and performance
of code reconstruction at the stage of development.
Getting the difficulties from SmartDiet, it provides a
guidance to the programmers to improve application
implementation for better energy efficiency.
The authors in [17] uses SmartDiet [20] for code
offloading in order to increase the battery life of
mobile devices. This paper is the study of feasibility
of method level offloading in network intensive
applications. It uses an open source Twitter client
to exemplify the associated issues. The paper uses
ThinkAir framework for offloading but disable all the
dynamic decision making feature. The limiting factor
of the paper is to dependent on expert developer or
domain expert for methods annotation.

5) Mobile code offloading from concept to prac-
tice and beyond.: In [18], the paper addresses that
code offloading technique faces many challenges in
practical usage and adapt a generic code offloading
architecture systematic approach. The authors also
identify the key limitations for code offloading and
provide the solutions for these limitations based on
the theoretical and experimental analysis. Based on
the solutions, the paper presents and evaluates use
cases which give insights in code offloading. The
proposed solutions increase the performance of mobile
application without producing extra overhead in the
devices. It also reduces the amount of data transfer
between device and cloud server. This paper identifies
inaccurate code profiling, integration complexity, dy-
namic configuration and offloading scalability as major
challenges and technical problems in code offloading

18 IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 13, NO. 1, DECEMBER 2016

technique.

In the proposed system, handling multiple offloading
requests, server creation can be time consuming and
costly. The system is evaluated on the face recognition,
gaming, chess game, and puzzle application.

B. Thread level granularity

For supporting the scalability with increasing
workload or proper resource usage, thread level
granularity is used for partitioning an application.
In thread level granularity, thread is migrated to
the remote server for execution. The remote server
execute multiple independent thread parallelly which
makes the system scalable.

1) CloneCloud: Chun et al. [19] created

CloneCloud which have enabled mobile application
to migrate thread to device clones operating in a
computational cloud. The system employs dynamic
profiling and static analysis to partition the mobile
application in order to optimize overall execution
cost. Herein, the application is partitioned, send it
to the clone, execute the code and re-integrating
the migrated thread back to the mobile device. The
selection of local and remote execution of methods is
taken by the optimization solver. The purpose of the
optimization solver is to deliver optimal application
methods to the cloud from the mobile devices.
The system has static analyzer for code offloading
which require experienced domain experts. This
paper consider limited environmental conditions and
assume resources that are not available on the cloud.
The CloneCloud system is evaluated on the virus
scanning, image processing, and privacy preserving
targeted advertising applications.

2) COMET: Gordon et al. [20] propose code
offload by migrating execution transparently called
COMET, a multi-threaded application that can be mi-
grated freely between devices depending on the work-
load and use distributed shared memory for offloading.
The aim of the system design is to require only
program binary or no manual effort, execute multi-
threaded programs correctly, improve speed of com-
putation, resist network, server failures and generalize
well with existing applications. The paper proposes
a scheduling algorithm which can give some loose
guarantees on worst case performance.

The system requires enough information in order to
restart the computation of remote devices if any type

of failure occurs. The COMET framework focuses
on performance improvement and energy saving for
image editor, turn based games, a trip planner and
math tools application.

3) EMCO: Flores et al. [21] proposed EMCO,

where high computation required operations are iden-
tified and partitioned at code level and offloaded for
remote processing. Mobile device consume services
from different cloud by efficiently utilizing solutions
in their delegation model. The authors proposed a
fuzzy logic engine which considered both mobile
and cloud variables like performance metrics, paral-
lelization of tasks, elasticity etc.Rules are introduced
asynchronously to the mobile device using notification
services. The paper also proposed evidence based
learning methods to enrich the offloading decision and
implement a prototype for fuzzy logic engine.
In code offloading, components of an application can
be marked as remote executable by a developer or an
automated mechanism. The purpose of the fuzzy logic
engine is to decide which components of an appli-
cation is offloaded or not. The logic engine profiles
bandwidth, connectivity, size of computational data,
and applies certain logic over them to make advantage
by code offloading.

C. Data Size Level Granularity

Data level granularity refers to deliver the data size
of a task to the remote server to execute the application
parallely. Data stream deliver to the remote server
either serially or parallely. In parallel execution, the
remote executable tasks increase the performance and
reduce battery usage.

1) Odessa: What computation to offload and how
to structure the parallelism across the mobile devices
and cloud, Ra et al. [22] proposed Odessa which
dynamically makes offloading and data parallelism de-
cisions for mobile interactive perception applications.
As performance depends on scene complexity and
environmental factors like network and device capabil-
ities, this paper found that offloading and parallelism
choices should be dynamic for an application.
Odessa considered a variety of execution environment,
network, device, application inputs and use networked
computing infrastructure to enhance the capabilities
of mobile devices. The proposed system evaluated
face recognition, object, pose recognition and gesture
recognition. The proposed system showed improve-
ment in performance over partitioning by domain

MOHAMMAD ERFAN et al.: A SURVEY OF CODE OFFLOADING MECHANISMS FOR MOBILE CLOUD COMPUTING 19

expert but domain expert definition was not defined
or verified.

2) COSMOS: Shi et al. [23] proposed Computation

Offloading as a Service for Mobile Devices called
COSMOS. The paper provides computation offloading
as a service for solving the problem of mobile device
computing resources demand.It also introduces how
the cloud provider offers the resources to the device
user for reducing cost and performance improvement.
The system manages cloud resources for offloading
requests for reducing monetary cost to the cloud
provider.
The proposed system only considerd network connec-
tivity context variable for offloading decision. There
was no pricing model defined for the cost. The system
was evaluated on face recognition, voice recognition
and chess game application.

IV. COMPARISON OF CODE OFFLOADING
MECHANISMS

A comparison of the existing mechanisms for code
offloading may address the way to point out to the
new solution for code offloading.

Level of Execution: In mobile applications, tasks are
either executed to the mobile devices or delegated
to the remote cloud servers or cloudlet for remote
execution. The metric describes how to execute the
partitioned code to the cloud and is it serial or parallel
depending on the different variable parameters.

Level of Profiling: In code offloading, tasks are
delivered to the remote resources where tasks can
be method, class, thread or data stream. This metric
describes which parts method, thread or data stream
of an application are offloaded to the cloud.

Security Requirements: In order to protect executable
code while delivering or storing to the remote cloud
from attacks. Different types of security such as
encryption,authentication can be assigned to the
application or remote server are needed to be secure.
The metric describes how much the server secure for
the executable code.

Code Profiler: The tasks of an application can be
partitioned either statically by expert developer or
identify remote executable tasks dynamically at
runtime. The metric describes how to partition the
code manually or automatically.

Offloading Adaptation Context: What to be
offloaded, when to offload, how to offload or where

to offload are the main adaptation contexts for code
offloading. The metric describes which adaptation
contexts are used for taking offloading decision.

In TABLE 1, we have summarised the comparison
of existing code offloading mechanisms based on
these performance metrics. From the research, we
have found that dynamic method level parallel
execution to the secure remote clouds increases
both performance and battery lifetime. MAUI and
CloneCloud execute offloadable codes to remote
clouds serially and the rest of the papers execute
parallely. MAUI, ThinkAir, Cuckoo, SmartDiet and
MCO implemented method level code partitioning.
On the other hand, Odessa and COSMOS impemented
data size level and the rest of the papers implemented
thread level partitioning. Among the papers surveyed,
only EMCO and MCO considered all the apaptation
concext (i.e., what, when, where and how to offload)
of code offloading. EMCO considered dynamic thread
level parallel execution and MCO considered dynamic
method level parallel execution. The discussion and
findings for code offloading are described in the next
section.

V. DISCUSSION AND FINDINGS

This section describes the discussion and findings
which help the researchers to do research in the
area of code offloading. Throughout this paper, many
research works have been analytically related to the
code offloading and a comprehensive survey of all the
studies would be impossible. The referenced research
is selected based on our knowledge of the topics.
From the research, we have found different findings
which help researchers to take necessary decisions for
building code offloading framework.

In code offloading, it is necessary to identify which
methods are executed locally and which are executed
remotely called partitioning. Detecting the methods or
threads which are executed either locally or remotely
during runtime is a challenging task and is an opti-
mization problem. There are three types of partitioning
for denoting the methods, threads or data size which
can be partitioned either statically or dynamically. In
code offloading, local and offloadable codes should
be annotated so that it is possible to identify the
local or remote executable tasks at runtime. From the
analysis, it is found that about 55% of the work are

20 IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 13, NO. 1, DECEMBER 2016

Comparison Metrics

Name of Paper Level of Execution

Level of Profiling

Security Requirements Code Profiler Offloading Adaptation Context

MAUI Serial method No Manual ‘What, When
CloneCloud Serial thread No Automated ‘What,When
ThinkAir Parallel method No(Future Work) Manual ‘What,When
Odessa Parallel Data Size No Automated ‘What, When
COMET Parallel thread No Automated Little What,How
Cuckoo Parallel method No(Future Work) Manual What, how
EMCO Parallel thread No Automated ‘What,When,how, where
SmartDiet Parallel method No Manual ‘What,when
OffloadAble Apps using SmartDiet Parallel method No Manual ‘What,when
COSMOS Parallel Data Size No Automated Where, How
Mobile code offloading: from concept
to practice and beyond Parallel method No Automated what, when, how where
Data Py
Si Partitioning level Execution Level .
ize Thread Serial
rea
18% 15%
27%
Method Parallel
55% 52%
Open Voice
Code Profiler Source & Application Type Based
Other Applicat
Applicati -
10n
0ns
11% Image 7%
Virus
Scanner
5%

Fig. 6: Findings on Code Offloading

using automatic code partitioning and 45% are using
static code partitioning. The partitioning of the code
offloading can be method level, thread level or data
size level. From or findings, about 55%, 27% and 18%
research works use method, thread and data size level
code partitioning respectively. The execution of the
offloadable tasks could be executed remotely either
parallely or serially. About 82% of the works support
parallel and 18% works use serial execution of remote
tasks. About 37%, 37%, 8%, 11%, and 7% works used
image processing, gaming, virus scanner, open source
and other applications and voice based applications
respectively. The entire findings are displayed in Fig.
6.

The researchers in code offloading could take de-

cisions while building code offloading mechanisms.
Most research works used parallel method level dy-
namic code offloading mechanism and evaluated their
work on image processing and gaming applications.

VI. OPEN CHALLENGES

This section describes the major challenges that
hinder the performance of computation offloading in
mobile cloud computing. The open challenges assist
the researchers to find new research directions in the
domain of code offloading.

1) Combination of Serial and Parallel Execution
of the Offloadable Code: The offloadable part of an
application that executed to the cloud can be serial or

MOHAMMAD ERFAN et al.: A SURVEY OF CODE OFFLOADING MECHANISMS FOR MOBILE CLOUD COMPUTING 21

parallel. The serial execution of the application to the
cloud is time consuming and devices needs to wait for
future execution. The parallel execution of the applica-
tion requires synchronization among offloadable parts
of the application. In order to remove the limitation of
serial and parallel execution of application separately,
the combination of the serial and parallel execution of
application can be applied to increase the performance
and battery lifetime. It will be an optimization problem
to identify which parts are to be executed serially
and which parts in parallel based on the network
connectivity, server load.

2) Cloud Provider Execution Cost Based on Of-
floaded Task Not on Hour Basis : Cloud computing
makes it possible for the users to pay on demand
basis or on the usage of resources. Sometimes the
cloud providers allocated resources that are not fully
utilized, but the user needs to pay for the resources.
The cloud provider could be charged according to the
execution time of the offload able task for the proper
use of the resources. The pricing of the offloadable part
of the applications are based on the execution time,
size of the executable part, frequency of execution.
The client provider needs to discard the cost or time
for creating, resuming or destroying VM. As a result,
cloud providers and mobile device users are both in the
win-win situation by charging only for computation
offloading and avoiding wasting of cloud resources.

3) Data Protection from Attacks: It is necessary to
protect data while delivering or storing it to the remote
cloud servers. Herein, Security and privacy are one of
the important factors that hinder the successful seam-
less execution of an application to the cloud via the
internet. In code offloading, sensitive and confidential
data is delivered to the remote server for execution
which is at risk from insider attacks. Data center
stores multiple clients data to a single server which
sometimes make it harder to secure one user data
from others. A number of code offloading mechanisms
analyze the need of security and privacy but few of
those have properly implemented the security to their
framework.

4) Seamless Communication among Remote
Clouds: The offloadable codes are delivered to the
remote cloud for increasing performance and reducing
energy consumption. The work assigned to the remote
cloud server will be increased by another clients
request having heavy computation. The remote server
will not perform correctly, if distance between the
cloud server and client are increasing. As a result, the

server needs to send the assigned work back to the
client. The problem can be mitigated by sending the
latest computing task of the server to other servers
which are optimal called live VM migration.

VII. CONCLUSION

In this paper, we have surveyed the state of the art
code offloading techniques for mobile systems and ex-
amine how mobile device users and cloud computing
make the computation offloading feasible. Different
type of metrics for code offloading has been presented
to better analyze offloading mechanisms. The paper
has also identified the types of applications that are
the candidate for code offloading and demonstrated
the findings gathered from the background. Finally,
we describe the open challenges with a view to assist
the researchers in finding new research direction in the
field of code offloading.

REFERENCES

[1] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Hetero-
geneity in mobile cloud computing: taxonomy and open
challenges,” Communications Surveys & Tutorials, IEEE,
vol. 16, no. 1, pp. 369-392, 2014.

[2] E. Ahmed, A. Gani, M. Sookhak, S. H. Ab Hamid, and
F. Xia, “Application optimization in mobile cloud computing:
Motivation, taxonomies, and open challenges,” Journal of
Network and Computer Applications, vol. 52, pp. 52-68,
2015.

[3] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen,
and H.-I. Yang, “The case for cyber foraging,” in Proceedings
of the 10th workshop on ACM SIGOPS European workshop.
ACM, 2002, pp. 87-92.

[4] R. K. Balan, M. Satyanarayanan, S. Y. Park, and T. Okoshi,
“Tactics-based remote execution for mobile computing,” in
Proceedings of the Ist international conference on Mobile
systems, applications and services. ~ACM, 2003, pp. 273—
286.

[5] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and
S. Tarkoma, “Carat: Collaborative energy diagnosis for mo-
bile devices,” in Proceedings of the 11th ACM Conference on
Embedded Networked Sensor Systems. ACM, 2013, p. 10.

[6] G. Huerta-Canepa and D. Lee, “An adaptable application of-
floading scheme based on application behavior,” in Advanced
Information Networking and Applications-Workshops, 2008.
AINAW 2008. 22nd International Conference on. 1EEE,
2008, pp. 387-392.

[7]1 S. Ou, K. Yang, and A. Liotta, “An adaptive multi-constraint
partitioning algorithm for offloading in pervasive systems,”
in Pervasive Computing and Communications, 2006. PerCom
2006. Fourth Annual IEEE International Conference on.
IEEE, 2006, pp. 10—pp.

[8] B. Seshasayee, R. Nathuji, and K. Schwan, “Energy-aware
mobile service overlays: Cooperative dynamic power man-
agement in distributed mobile systems,” in Autonomic Com-
puting, 2007. ICAC’07. Fourth International Conference on.
IEEE, 2007, pp. 6-6.

22

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 13, NO. 1, DECEMBER 2016

G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan, M. J.
Irwin, and R. Chandramouli, “Studying energy trade offs in
offloading computation/compilation in java-enabled mobile
devices,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 15, no. 9, pp. 795-809, 2004.

D. Shivarudrappa, M. Chen, and S. Bharadwaj, “Cofa: Au-
tomatic and dynamic code offload for android,” University
of Colorado, Boulde, 2011.

H. Qian and D. Andresen, “Jade: Reducing energy consump-
tion of android app,” the International Journal of Networked
and Distributed Computing (IJNDC), Atlantis press, vol. 3,
no. 3, pp. 150-158, 2015.

P. B. Costa, P. A. Rego, L. S. Rocha, F. A. Trinta, and J. N.
de Souza, “Mpos: a multiplatform offloading system,” in
Proceedings of the 30th Annual ACM Symposium on Applied
Computing. ACM, 2015, pp. 577-584.

E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl, “Maui: making smart-
phones last longer with code offload,” in Proceedings of the
8th international conference on Mobile systems, applications,
and services. ACM, 2010, pp. 49-62.

S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang,
“Thinkair: Dynamic resource allocation and parallel execu-
tion in the cloud for mobile code offloading,” in INFOCOM,
2012 Proceedings IEEE. 1EEE, 2012, pp. 945-953.

R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo:
a computation offloading framework for smartphones,” in
Mobile Computing, Applications, and Services. Springer,
2012, pp. 59-79.

A. Saarinen, M. Siekkinen, Y. Xiao, J. K. Nurminen,
M. Kemppainen, and P. Hui, “Smartdiet: offloading popular
apps to save energy,” ACM SIGCOMM Computer Commu-
nication Review, vol. 42, no. 4, pp. 297-298, 2012.

——, “Offloadable apps using smartdiet: Towards an analysis
toolkit for mobile application developers,” arXiv preprint
arXiv:1111.3806, 2011.

H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and
R. Buyya, “Mobile code offloading: from concept to practice
and beyond,” Communications Magazine, IEEE, vol. 53,
no. 3, pp. 80-88, 2015.

B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: elastic execution between mobile device and
cloud,” in Proceedings of the sixth conference on Computer
systems. ACM, 2011, pp. 301-314.

M. S. Gordon, D. A. Jamshidi, S. A. Mahlke, Z. M. Mao,
and X. Chen, “Comet: Code offload by migrating execution
transparently.” in OSDI, 2012, pp. 93-106.

H. Flores and S. Srirama, “Adaptive code offloading for mo-
bile cloud applications: Exploiting fuzzy sets and evidence-
based learning,” in Proceeding of the fourth ACM workshop
on Mobile cloud computing and services. ACM, 2013, pp.
9-16.

M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall,
and R. Govindan, “Odessa: enabling interactive perception
applications on mobile devices,” in Proceedings of the 9th
international conference on Mobile systems, applications,
and services. ACM, 2011, pp. 43-56.

C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik,
and E. Zegura, “Cosmos: computation offloading as a ser-
vice for mobile devices,” in Proceedings of the 15th ACM
international symposium on Mobile ad hoc networking and
computing. ACM, 2014, pp. 287-296.

Md. Irfan received his B.Sc. and M.Sc.
in Software Engineering, Institute of In-
formation Technology, University of Dhaka
in 2014 and 2016 respectively. He is now
working as a lecturer in the Department of
Computer Science and Engineering, Barisal
University. He has research interest in Soft-
ware engineering and mobile-cloud comput-
ing.

Bidoura Ahmed Hridita received his B.Sc.
and M.Sc. in Software Engineering, Insti-
tute of Information Technology, University
of Dhaka in 2014 and 2016 respectively.
She has been doing research in the area of
Cloud Computing.

Md. Shariful Islam received his BS and
MS in Computer Science from the Univer-
sity of Dhaka, Bangladesh. He obtained his
PhD degree in Wireless Networking from
the Department of the Computer Engineer-
ing, School of Electronics and Informa-
tion, Kyung Hee University, South Korea
in 2011. He is now working as a Professor
in the Institute of Information Technology

(IIT), University of Dhaka, Bangladesh. He has been teaching a
good number of courses related to Computer Networks, Wireless
and Mobile Systems, Security, Information Technology Project
Management, etc. to graduate and undergraduate students of
reputed universities. He has research interests in wireless net-
working, Wireless Mesh Networks, Information security, Cloud
computing, etc. He has published a good number of research
papers in international conferences and journals.

Mohammad Shoyaib received his MS de-
gree in computer science from the Univer-
sity of Dhaka, Bangladesh, in 2000 and in
2012, he has completed his PhD degree
from the Kyung Hee University, South Ko-
rea. His research interests include pattern
recognition and machine learning.

