
IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 13, NO. 1, DECEMBER 2016 23

A Scenario Based API Recommendation System
Using Syntax and Semantics of Client Source

Code
S. M. Shahnewaz, Husne Ara Rubaiyeat, Hasan Mahmud, Md. Kamrul Hasan

Abstract—In software development, developers fre-
quently look for the examples and documentation pro-
vided by vendor of application programming interface
(API) libraries, forums, textbooks and unofficial web-
sites. However, a vast number of example API usage
scenarios, that are embedded in the billions of line of
already developed code are largely unexploited. In this
research work, we present an approach that analyses
the syntax and semantics of already developed source
code to extract API usage scenarios for the current
structural context of the developer. Our approach can
extract an API usage scenario merging heterogeneous
API elements. We also developed a scenario ranking al-
gorithm based on the interrelationships of API elements.
In the course of scenario extraction and ranking we have
developed some heuristics based on developers coding
experience. We demonstrate a qualitative evaluation by
reporting a user study involving users completing four
development tasks. Results show that our developed
tool takes around 40% less time compared to existing
systems. In addition, we present the precision-recall
based quantitative evaluation. The high precision and
recall values indicate that our proposed system is able
to retrieve most of the best-fit API usage scenarios
from candidate source files. Therefore, experimental
evaluation provide evidence that scenario based recom-
mendation is appropriate to help developers.

Index Terms—API, syntax and semantics of source
code, API recommendation system, Scenario extraction,
Ranking, Precision, and Recall.

I. INTRODUCTION

Application Programming Interfaces (APIs) have
great significance in modern day of software develop-

* Corresponding author.
S. M. Shahnewaz, Hasan Mahmud*, Md. Kamrul Hasan are

with the Systems and Software Lab (SSL), Department of
Computer Science and Engineering (CSE),Islamic University of
Technology(IUT), Dhaka. e-mail: {shawncit, hasan, hasank}@iut-
dhaka.edu; Husne Ara Rubaiyeat is with Faculty of Natural
Science, National University, Bangladesh; rubaiyeat@yahoo.com

Manuscript received March 12, 2015; revised May 14, 2015.

ment. To increase the productivity, software developers
reuse the code libraries or frameworks through APIs.
However, example usage and documentation about the
APIs are often incomplete or out of date. As a result,
both the novice and expert developers have to face
several challenges to learn new APIs. Recently, a field
study [1] of API learning obstacles was done over 440
professional developers of Microsoft. According to
the opinions and experiences of those developers, five
important factors are to be considered when designing
API documentation: documentation of intent; code
examples; matching of APIs with scenarios; penetra-
bility of API; and format and presentation. Among
those factors matching APIs with scenarios is the
most desired one to developer community. Moreover,
modern Use-case based implementation technique fre-
quently demands a desired chunk of functionality such
as ”drawing a rectangle on the screen” or ”sending
file via HTTP”. According to a Microsoft developer
[1]: ”If it’s not clear how I match APIs with their
scenarios, if I need to draw a circle on the screen,
and I dont see something that clearly says, ”This
is how you draw”, I will say that’s complex.” In
the context of software development, a scenario is
defined as a desired chunk of functionality such as
”drawing a rectangle on the screen” or ”sending file
via HTTP”. Therefore, API elements which perform
collaboratively to achieve a desired functionality are
defined as an API usage scenario. However, the main
challenge of learning API is discovering API elements
which support a scenario. We believe that a vast
number of example API usage scenarios are embedded
in the billions of lines of already developed code. For
example, a developer needs to establish a connection
with the database via JDBC. Consider that API ele-
ments which establish connection with the database
are embedded in the getMysqlConnection() method
of the SqlConnection class shown below which is



24 IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 13, NO. 1, DECEMBER 2016

developed for some other project.

public class SqlConnection {
private String driverPath =

"com.mysql.jdbc.Driver";
private String url =

"jdbc:mysql://localhost:3306/localbd";
private String username = "root";
private String password = "";
public Connection getMysqlConnection()

throws ClassNotFoundException,
SQLException {

Class.forName(driverPath);
Connection con =

DriverManager.getConnection(url,
username, password);

return con;
}
public static void main(String args[])

throws ClassNotFoundException,
SQLException

{
SqlConnection msc = new SqlConnection();
Connection con =

msc.getMysqlConnection();
System.out.println("Connection

successful");
}
}

Now, it would be helpful for the developer, if he gets
the API usage scenario as shown below:

1. private String driverPath =
"com.mysql.jdbc.Driver";

2. private String url =
"jdbc:mysql://localhost:3306/localbd";

3. private String username = "root";
4. private String password = "";
5. Class.forName(driverPath);
6. Connection con =

DriverManager.getConnection(url,
username, password);

From the example shown, we formulate our problem
definition as ”To design a scenario based API recom-
mendation system that will extract API usage scenario
from already developed source codes”. The main focus
of this research work is that the candidate source files
are analyzed to extract matching API usage scenarios
for the current structural context of a developer. Our
approach has three key contributions over existing
proposals for extracting API usage for a given task.
First, in scenario extraction, we consider semantics

(type and identifier) and structures of the client code.
We believe that consideration of syntax and semantics
will help to provide better quality API usage scenar-
ios. Existing methods only consider either types or
identifiers. Second, our scenario extraction algorithm
takes multiple query terms and merges heterogeneous
API elements needed to implement a task. As a result,
developers get most of the relevant APIs in a single
search. Third, we introduced key API based ranking
heuristic which ensures that best matching scenarios
are placed on top of the recommendation set. To define
the key APIs we proposed two heuristics. In course of
evaluation of our work, we also developed a client
tool MAPIS (Matching API with Scenarios) described
in [27]. We choose to perform both quantitative and
qualitative evaluation approach. In the quantitative
evaluation, we calculated the precision and recall of
the retrieved scenarios to evaluate the performance of
our system. We designed and conducted a user study
to evaluate the usefulness of MAPIS to developers
for solving real world problems which involved reuse
of existing APIs. The users were able to access the
relevant scenarios, understand the examples, and com-
plete the programming task; providing initial evidence
that scenario based recommendation is appropriate to
help developers. The next section started with a brief
description of the related works in this field. After
that we have described the details of our proposed
approach in section III. The evaluation of our pro-
posed approach is presented section IV. Some future
extension of this research work is discussed in section
V.

II. RELATED WORKS

To reduce the effort of a developer in reusing
existing API libraries and frameworks, three major
directions have been proposed so far. First, code search
engines are developed to query code from software
repositories. Second, IDE code completion systems
are proposed to provide relevant API elements for
the current context of a developer. Third, API recom-
mendation systems are proposed to suggest relevant
API usage examples for a given task. In the following
sections, we describe the approaches. Code search
engines like KODER [2] and KRUGLE [3] index the
open source repositories and present relevant source
files in response to a query. However, code search
engines do not consider the structure of the source
code. It treats source code as documents. As a result,



S. M. SHAHNEWAZ et al.: A SCENARIO BASED API RECOMMENDATION SYSTEM USING SYNTAX AND SEMANTICS OF CLIENT SOURCE CODE 25

outputs of the code search engine are source files.
Code completion system is a feature of an IDE that
offer a list of available variables, types and methods
based on the current context of a developer. Most of
the previous work on code completion systems focused
either on re-ordering the list of methods accessible on
a given type, or on predicting the method of an API
type most likely to be called next in a given context.
A recent work [12] in this direction facilitates discov-
erability of APIs by recommending methods or types,
which although not directly reachable from the type a
developer is currently working with, may be relevant
to solving a programming task. API recommendation
system suggests useful API usage example by analyz-
ing already developed source code. Researchers from
all over the world have proposed different approaches
to extract relevant API usage scenarios from source
code. Structural relation of source code elements is
matched with query context [8], association rule and
sequential pattern based recommendation system [6],
semantic feature based code search [9], adding exam-
ple with API documentation [10], method sequence
engineering based reverse engineering system [11],
DAG based representation of source code [5] were
proposed by different research community. The most
recent work IDENTIFIRE [14] of this field describes
an approach that mines the intentional knowledge
embodied in the identifiers of existing source code.
It uses term-method association index to recommend
API methods. However, main limitation of this ap-
proach is that, they do not consider the source code
structure that is the interrelationship among API ele-
ments. As a result, complete API usage scenarios are
not recommended by this work. Another recent project
MACs [6] worked on mining API code snippets for
code reuse. MACs suggest API snippets based on
association rule and sequential patterns. The limitation
of this system is that developers have to give an
initial statement to get recommendation from MACs.
Moreover, definition of API usage scenarios are not
reflected in the recommendation set. PARSEWeb [15]
and XSnippet [16] gather the relevant code samples
from Google Code Search Engine and perform a static
analysis over them to answer the queries of type Tin
Tout. The dynamic database (that of Google Code
Search) together with the query splitting results in
some reported improvements. XSnippet [16] makes
use of context information along with a user query
for finding relevant snippets. The Strathcona [8] API

usage example recommendation tool assist developers
in finding relevant fragments of code, or examples,
of an APIs use based on the structural context of
developers code and example repositories. Reiss [9]
proposed a technique that extracts code examples from
a repository, extracts semantic features from code
examples, clusters them, and finds a representative
code example from each cluster. Marcel Bruch, et al.
[17], proposed intelligent code completion system that
learns from existing code repositories by searching
for code snippets where a variable of the same type
as the variable for which the developer seeks advice,
is used in a similar context. Thummalapenta and Xie
describe the SpotWeb [18], a code search based tool,
able to mine code examples gathered from open source
repositories on the web. The study also proposes a
method called coldspots that can detect API classes
and methods that are rarely used. The key limitation
of the present approaches is that heterogeneous API
elements are not merged in a single scenario. For
example, consider the SQLConnection class (shown in
introduction) that contains the necessary API elements
needed to create a connection with the database. Six
statements shown in the example API usage scenario
is the proper scenario for creating connection with
database. However, existing approaches are only able
to suggest the six required statements in two separate
scenarios as below. The ideal scenario would be the
composition of Scenario 1 and Scenario 2.

//Scenario 1:
1. private String url =

"jdbc:mysql://localhost:3306/localbd";
2. private String username = "root";
3. private String password = "";
4. Connection con =

DriverManager.getConnection(url,
username, password);

//Scenario 2:
1. private String driverPath =

"com.mysql.jdbc.Driver";
2. Class.forName(driverPath);

So the definition of API usage scenario is not
reflected in most of the works. Moreover, current
systems only consider either types or identifiers in
recommending scenarios. Most of the existing systems
do not support multiple query terms and interrelation-
ships of APIs for ranking scenarios. In the direction of
API recommendation system, our approach is different
from other approaches by three main aspects. First, in



26 IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 13, NO. 1, DECEMBER 2016

scenario extraction, we defined two heuristics to con-
sider semantics (type and identifier) and structures of
the client code. We believe that consideration of syntax
and semantics will help to provide better quality API
usage scenarios. Existing methods only consider either
types or identifiers. Second, our scenario extraction
algorithm takes multiple query terms and merges dif-
ferent API elements needed to implement a task. As
a result, developer gets most of the relevant API in
a single search. Third, we introduced key API based
ranking heuristic which ensures that best matching
scenarios are placed in top of the recommendation set.

III. PROPOSED APPROACH

In any API recommendation system there are four
key steps: candidate source file collection, API usage
scenario extraction, scenario ranking and representa-
tion of candidate recommendation (see Figure 1). In
our proposed approach, we consider multiple query
terms. Based on those query terms, candidate source
files are collected from the already developed and
indexed open source software repositories. Hence,
the input of our proposed system is a set of query
terms and already developed candidate source files. To
overcome the limitation of present approaches, in our
proposed approach, we introduced and applied some
heuristics in scenario extraction and scenario ranking.
Those heuristics are defined from the overall user
experience [1] of the developers in using unknown
APIs.

A. Heuristics

Our proposed API recommendation system applies
two types of heuristics to recommend scenarios. First,
heuristics for scenario extraction are used to generate
the graph from expression statement list. Second,
heuristics for ranking are used to identify key API
elements from extracted scenarios. Scenario extraction
heuristics are as follows:

• Scenario Extraction Heuristic 1: Object creation
rule and method call sequences are key factors
in API learning.

• Scenario Extraction Heuristic 2: Considering
both code structure and semantic (type and iden-
tifier) provides scenario with all necessary API
element.

Heuristic 1 gives the hints that developers face dif-
ficulties in discovering proper object creation rule and
method call sequence to implement a task. Conversely,

Fig. 1: Overview of the Proposed Approach

heuristics 2 give the hints that with the code structure
type and identifier information helps to extract sce-
nario with all necessary API elements. Ranking (Key
API) heuristics are as follows:

• Key API Heuristic 1: Object created and method
call nodes those contains query terms are key
APIs.

• Key API Heuristic 2: Object created and method
call node those use the previously created objects
and their methods as arguments are key APIs.

Any of the present approaches do not identify
the interrelationship of APIs within the scenario for
ranking. We define the term ”key API” to represent the
interrelationship among API elements. Our key API
based ranking heuristics define the key API elements
from a scenario by analysing the interrelationship
among API elements.

B. Scenario Extraction Process

In scenario extraction, we consider structural re-
lation and semantics (Type and Identifier informa-
tion) of the source code. In our proposed approach,
we consider multiple query terms. Based on those
query terms, candidate source files are collected from



S. M. SHAHNEWAZ et al.: A SCENARIO BASED API RECOMMENDATION SYSTEM USING SYNTAX AND SEMANTICS OF CLIENT SOURCE CODE 27

the already developed indexed open source software
repositories. Hence, the input of our proposed system
is a set of query terms and already developed candidate
source files. The scenario extraction process consists
of three key steps:

• Generating expression statement list from candi-
date source files

• Generating graphs (Directed Acyclic Graph and
Undirected Graph)

• Extracting scenario
Consider the SqlConnection class in Introduction

section. The expression statements from the field dec-
laration and initialization statements are:

private String driverPath =
"com.mysql.jdbc.Driver";

private String url =
"jdbc:mysql://localhost:3306/localbd";

private String username = "root";
private String password = "";

In Object oriented programming, every member
methods have access to the member fields of the class.
That is why we merge those expression statements
with each member method of the class. After analyz-
ing the different types of statements of thegetMysql-
Connection() method, we retrieve the following list of
expression statements:

1. private String driverPath =
"com.mysql.jdbc.Driver";

2. private String url =
"jdbc:mysql://localhost:3306/localbd";

3. private String username = "root";
4. private String password = "";
5. Class.forName(driverPath);
6. Connection con =

DriverManager.getConnection(url,
username, password);

We repeat the expression statement extraction proce-
dure for all other methods for a given class. In graph
generation stage, we construct a Directed Acyclic
DAG (DAG) to represent the structural relation among
the expression statements. DAG is used to identify
key APIs from extracted scenario. An undirected ver-
sion of the DAG is used to extract all dependent
API elements for a particular scenario. According to
scenario heuristic 1 and heuristic 2, we defined the
following key components, which are basically used
in API usage. Those components represent four types
of nodes of the DAG.

TABLE 1: DAG representation of source code

• Object Creation node: OC (Type, object): state-
ment no.

• Object Declaration node: OD (Type, object):
statement no.

• Method Call node: MC (Type, method name):
statement no.

• Field Access node: FA (Type, object): statement
no.

Fig. 2: Different Types of (a) nodes and (b) edges of
the DAG

The edges of the DAG represent the following
relation between two vertices:

• Argument
• Object created

Details of the DAG generation with different types of
nodes and edges are shown in Table 1.

In scenario extraction step, query terms and undi-
rected version of the DAG are used as inputs. Based
on the query terms, our scenario extraction algorithm
identifies the source nodes from the undirected graph
that comprise query terms. Then, for each source node
Breadth First Search (BFS) algorithm is applied to



28 IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 13, NO. 1, DECEMBER 2016

collect all of the connected nodes. In this process
a set of related statements are generated. Therefore,
statements collected from different components of
the graph are merged to construct scenario with het-
erogeneous API elements. Finally, after sorting and
removing the duplicate statements, scenario extraction
algorithm returns a scenario with all necessary API
elements. The pseudo code of the algorithm is shown
in Algorithm 1.

Algorithm 1 Scenario Extraction Algorithm

For the expression statement list generated for get-
MysqlConnection()method earlier in this section, the
undirected version of the DAG produced is shown
in Figure 3(a). The highlighted nodes are the source
nodes those contain the query terms. After applying
BFS algorithm for each source node we get two lists
of statements for the two different components of the
undirected graph. Figure 3(b) highlights the nodes
explored by BFS for query term ’Connection’ and
’DriverManager’. Lists of statements extracted after
applying BFS are: Statement list1 (for Connection):
{2, 3, 4, 6, 6, 6, 6, 6} and Statement list 2 (for
DriverManager) :{ 1, 5, 5}. According to the scenario
extraction algorithm, we make the union of two ex-
tracted statement list and obtain the following final
scenario statement list: Final Scenario: {1, 2, 3, 4,
5, 6} We formally present the pseudo code of the
algorithm in Algorithm 1.

Fig. 3: Undirected graph highlighting (a) query terms
and (b) scenario nodes

C. Ranking Subsystem

While the scenario extraction process returns a set
of code snippets all of which that satisfy a given
user query, the fit of these code snippets in solving
a particular programming task may, however, vary.
On average, a user can only be expected to scan the
first ten or so code snippets returned by any search or
mining process [19]. To best assist developers it is crit-
ical that scenarios with the potential to be best-fits be
ranked within the first 10 or so results. In this section,
we present a novel weight based ranking system. In
the previous works [5], [16], most of the researchers
have used shortest length (number of statements) and
frequency of occurrence of a particular scenario in
ranking. However, irrelevant code snippets may have
shortest length and high frequency. To overcome that
limitation, we introduced two key API based heuristics
in ranking scenarios. Key API based heuristics are
describes in the following section.

• Key API Heuristic 1: Object created and method
call nodes those contains query terms are key



S. M. SHAHNEWAZ et al.: A SCENARIO BASED API RECOMMENDATION SYSTEM USING SYNTAX AND SEMANTICS OF CLIENT SOURCE CODE 29

APIs. For example, consider the code snippet
returned for query terms ”Properties” and ”Mes-
sage” shown below. In the code snippet there are
two object created nodes those contains query
terms. So, according to our query heuristic 1,
key API is new Properties() and new MimeMes-
sage(session).

1. Properties properties = new
Properties();

2. properties.put(mail.smtp.host,
smtp.some-domain.com);

3. Session session =
Session.getDefaultInstance
(properties, null);

4. Message message = new
MimeMessage(session);

5. Transport.send(message);
password);

• Key API Heuristic 2: Object created and method
call node those use the previously created objects
and their methods as arguments are key APIs.
For example, code snippet shown above construct
an instance of Properties type and used that to
construct an instance of Session type by calling
getDefaultInstance() method. So, according to
key API heuristic 2, getDefaultInstance() method
of Session type is a key API.

Similarly, send method of TransportAPI is also a
key API since it used the previously created Message
instance as argument. We use the steps given in
Table 2, to rank a set of recommendation based on
key APIs. Ranking among three example scenarios
are shown in Table 3. We can see that our ranking
heuristics are able to suggest most useful scenarios
in top recommendations. The first scenario is the best
since it shows how to set the properties needed to send
an email programmatically. As well as, it also shows
the steps needed to send and a message object via the
static send method of Transport class.

IV. EVALUATION

We implemented our algorithms and developed the
client tool named MAPIS [27]. The MAPIS tool was
deployed on a standalone PC Pentium IV 2.8 GHz
with 2 GB RAM running Microsoft Windows 7 and
MySQL database. To compare our proposed approach
with existing system, we have chosen IDENTIFIRE
[14] which is the most recent work in this field.

TABLE 2: Ranking Steps

TABLE 3: Ranking amoung three scenarios for query
terms ”Properties” and ”Message”.

Though the source code of that work cannot be
obtained, we carefully implemented their approach
and compared performance with our proposed system.
For two reasons, we have selected that paper. First,
IDENTIFIRE [14] deals with multiple query terms.
Second, it suggests methods based on the current
structural context of the developer.

We have performed both quantitative and qualitative
evaluation of our system. For quantitative result we
present precision-recall measurements of our proposed
system and for qualitative evaluation we present a
comprehensive user study. In the user study we con-



30 IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 13, NO. 1, DECEMBER 2016

sidered KODERS [2] tool also as it is frequently used
by the programmers for code recommendation.

A. Building the repository

In order to create a test bed, we build a local repos-
itory and indexed eight open source java project from
sourgefourge [13] which contains around 3,000 java
files. We have stored type, objects and methods name
against each java source file in MySQL relational
database. The projects were chosen from different
areas including programming environment, database,
desktop application, text editor, web services, and etc.
The statistics about those projects are shown in Table
4.

TABLE 4: Statistics of the indexed open source Java
projects.

B. Selecting sample tasks and query

To analyze the usefulness and accuracy of our
proposed system for providing relevant API usage
scenarios to a developer we designed ten different
programming tasks (Table 5). The task was cho-
sen to cover a wide range of applications including
socket programming, desktop environment, database
programming, server programming, DAG theory, re-
porting, and compiler design. The related query for
each task is also defined. For each query candidate
java files were retrieved from local repository.

C. Precision and recall based evaluation of retrieved
scenarios

The performance of information retrieval systems
is often evaluated in terms of recall and precision.
Precision is defined as the number of relevant materials
retrieved by a search divided by the total number of
materials retrieved by that search. Recall is defined as
the number of relevant materials retrieved by a search
divided by the total number of existing relevant materi-
als which should have been retrieved. In our contexts,
precision and recall are defined in terms of a set of

retrieved API usage scenarios (e.g., the list of API
usage scenarios recommended by MAPIS for a query)
and a set of relevant API usage scenarios(e.g., the list
of API usages scenarios found in local repository by
manual inspection for a particular programming task).
More formally, we define precision and recall as

Figure 4 and 5 shows the comparison of average
precision recall plotting for 5, 10, 15, 20, 25, and
30 scenarios between our approach (we name it as
MAPIS) and IDENTIFIRE [14]. From the result we
can see Performance of MAPIS is better compare
to IDENTIFIRE and MAPIS is able to recommend
relevant scenarios in top recommendation. An API

Fig. 4: Average precision recall plottings of 10 tasks.

usage scenario with lots of matching keywords may
not be useful to the developer, if it does not contain
proper object creation and method call sequences.
Potential scenarios have all dependent object creation
and method call sequences. Moreover, developers also
like the code snippet that implements a scenario with
few statements. Considering those facts, we identify
the key APIs (key API heuristic 1) from the scenario
and use it in ranking. Most of the developers have
used shortest length and frequency of occurrence of
a scenario as ranking parameters. We calculate the
precision of four programming task (designed for user
study) using shortest length heuristics and compared it
to the precision of key API heuristic. Figure 6 shows
the result of considering different types of ranking
heuristic is better compare to shortest length heuristic.
In our scenario extraction algorithm we considered



S. M. SHAHNEWAZ et al.: A SCENARIO BASED API RECOMMENDATION SYSTEM USING SYNTAX AND SEMANTICS OF CLIENT SOURCE CODE 31

both syntax and semantics of client source code.
Most of the works only consider either type infor-
mation or identifier information. Hence, only object
creation scenarios are recommended by the existing
approaches. As we consider both identifiers and types,
our approach retrieves scenarios with all dependent
object creation and method call statements.

An API usage scenario with lots of matching
keywords may not be useful to the developer, if it
does not contain proper object creation and method
call sequences. Potential scenarios have all dependent
object creation and method call sequences. Moreover,
developers also like the code snippet that implements
a scenario with few statements. Considering those
facts, we identify the key APIs (key API heuristic 1)
from the scenario and use it in ranking. Most of the
developers have used shortest length and frequency of
occurrence of a scenario as ranking parameters. We
calculate the precision of four programming task (de-
signed for user study) using shortest length heuristics
and compared it to the precision of key API heuristic.
Figure 6 shows the result of considering different
types of ranking heuristic is better compare to shortest
length heuristic. In our scenario extraction algorithm
we considered both syntax and semantics of client
source code. Most of the works only consider either
type information or identifier information. Hence, only
object creation scenarios are recommended by the
existing approaches. As we consider both identifiers
and types, our approach retrieves scenarios with all
dependent object creation and method call statements.

D. User Study

To evaluate the usefulness of the proposed method,
we designed and conducted a user testing using
MAPIS for solving real world programming problems
which involved reuse of existing APIs. We selected
four programming problems from different domains
and given to 10 users. Users participated in the study
are the undergraduate computer science students. Each
user has around two years Java programming expe-
riences. Each user was allowed to use MAPIS for
two programming problems. For the remaining two
problems, users were instructed to use KODERS [2]
code search engine for one problem and IDENTIFIRE
[14] for the other. None of the users have previously
used any of the tools used in the study. So, a brief
introduction about each tool was given to the users.

TABLE 5: Characteristics of programming tasks.

Problem 1: In real world software development
developer frequently needs to load properties from xml
file. Properties API of JDK is used to implement the
task. Users were asked to display all the properties
available in the xml file. Problem 2: Developer some-
time needs to create zip file for a folder. In Java zip
file is created via ZipOutputStream and ZipEntry APIs.
Users were asked to create a zip file for a given folder.

• Problem 1: In real world software development
developer frequently needs to load properties
from xml file. Properties API of JDK is used to



32 IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 13, NO. 1, DECEMBER 2016

implement the task. Users were asked to display
all the properties available in the xml file.

• Problem 2: Developer sometime needs to create
zip file for a folder. In Java zip file is created via
ZipOutputStream and ZipEntry APIs. Users were
asked to create a zip file for a given folder.

Fig. 5: Average precision plottings of 10 tasks.

Fig. 6: Precision plotting’s of key API and Shortest
Length heuristic.

• Problem 3: In desktop application, file open and
save dialog are commonly used. Users were asked
to develop the following desktop application us-
ing swing library of JDK. The application will
open a file chooser dialog when user clicks on
the ”open a file” button. Similarly, save file dialog
will be opened when user click on the save file
”save a file button”. All the activities will be
displayed in a text area.

• Problem 4: JDBC is the Java technology to con-
nect to a remote database and run SQL queries
on it. The user is given the URL of a remote
database server. The task is to connect to the
database using JDBC.

From the user testing results, we analyze the average
task development time and percentage of users was
able to complete each task using each tool.

Fig. 7: Average Time Taken by the Users on the
Problems using each Tool.

Fig. 8: Percentage (%) of users solved the problems
using each tool.

First, Figure 7 illustrates the average time taken by
the users on the problems using each tool. From the
chart we can see that MAPIS took around 40% less
time compared to KODER and IDENTIFIRE tools.
Second, in Figure 8, we compare the percentage (%)
of user was able to solved the problems using each
tool. From the chart, we can see that 100% percent
users were able to solve three tasks. However, average
percentage of users completed the tasks using KODER
[2] and IDENTIFIRE [14] is not more than 50% which
indicates that our tool recommended useful API usage
scenarios to the developers.

V. CONCLUSION

In this research work, we investigated how the
developers can be provided useful API usage scenarios
for a given task. The main difference of our approach
with others is that we consider types, identifier and
code structure in scenario extraction. At the same time,
our key API based ranking algorithm provides best
matching scenarios in the top as recommendation. In
addition, our proposed system takes multiple query



S. M. SHAHNEWAZ et al.: A SCENARIO BASED API RECOMMENDATION SYSTEM USING SYNTAX AND SEMANTICS OF CLIENT SOURCE CODE 33

terms and suggests a complete solution for a partic-
ular problem in a single hit. We presented precision-
recall based evaluation to investigate the usefulness
of the proposed system. We found that our scenario
extraction and ranking algorithm is performing better
compare to exiting approaches. From this we conclude
that our proposed system is able to reduce the devel-
opers effort in finding relevant API usage scenarios,
although further investigation is needed to determine
the effectiveness of the retrieved scenarios. We have
also performed a user study from which we got good
response from software developers. MAPIS provides
an easily extensible framework. So, in our future work
we have planned to add more languages in MAPIS
tool. In this research work, indexing algorithm was
not considered. To improve the searching power, an
indexing algorithm can be designed that help in getting
more relevant API usage scenarios.

REFERENCES

[1] DeLine and Robert, A field study of API learning obstacles,
Empirical Software Engineering, vol. 16, no. 6, pp. 703-732,
2011.

[2] Koders inc. [Online]. http://www.koders.com
[3] Krugle inc. [Online]. http://www.krugle.com
[4] Erik Linstead et al., Sourcerer: mining and search-

ing internet-scale software repositories, Data Mining and
Knowledge Discovery, vol. 18, no. 2, pp. 300-336, 2009.

[5] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei,
MAPO: Mining and Recommending API Usage Patterns,
ECOOP 2009 Object-Oriented Programming, vol. 5653, pp.
318-343, 2009.

[6] Sheng-Kuei Hsu and Shi-Jen Lin, MACs: MiningAPI-
codesnippets for codereuse, Expert Systems with Applica-
tions, vol. 38, no. 6, pp. 72917301, 2010.

[7] S. Chatterjee, S. Juvekar, and K. Sen, SNIFF: A Search
Engine for Java Using Free-Form Queries, Funda-mental
Approaches to Software Engineering.: Springer Berlin /
Heidelberg, 2009, ch. 5503, pp. 385-400.

[8] Reid Holmes, Robert J. Walker, and Gai C. Murphy, Strath-
cona example recommendation tool, 10th European software
engineering conference held jointly with 13th ACM SIG-
SOFT international symposium on Foundations of software
engineering, 2005, pp. 237 240.

[9] P. Steven Reiss, Semantics-based code search, in Proceedings
of the 31st International Conference on Software, 2009, pp.
243-253.

[10] Juanjuan Jiang and Johannes Koskinen, Constructing Usage
Scenarios for API Redocumentation, in 15th IEEE Interna-
tional Conference on Program Comprehension, 2007, pp.
259-264.

[11] M. Salah, et. al., Scenariographer: A tool for reverse en-
gineering class usage scenarios from method invocation
sequences, in In ICSM.: IEEE Computer Society, 2005, pp.
155-16.

[12] E. Duala-Ekoko, M. Robillard, and M. Mezini, Using
Structure-Based Recommendations to Facilitate Discover-
ability in APIs, ECOOP 2011 - Object-Oriented Program-
ming, vol. 6813, pp. 79-104, 2011.

[13] Source Fourge Org. [Online]. www.sourcefourge.org
[14] L. Heinemann, et. al., Identifier-Based Context- Dependent,

16th European Conference on Software Maintenance and
Reengineering, 2012, pp. 31-40.

[15] Suresh Thummalapenta and Tao Xie, Parseweb: a program-
mer assistant for reusing open source code on the web, in
Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, 2007, pp.
204-213.

[16] Naiyana Tansalarak and Kajal Claypool, Xsnippet: Mining
For Sample Code, in 21st annual ACM SIGPLAN conference
on Object-oriented programming systems, 2006, pp. 413-
430.

[17] Marcel Bruch, Martin Monperrus, and Mira Mezini, Learn-
ing from examples to improve code completion systems, in
Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering,
2009, pp. 213-222.

[18] S. Thummalapenta and Tao Xie, SpotWeb: Detecting Frame-
work Hotspots and Coldspots via Mining Open Source Code
on the Web, in Proceedings of the 23rd IEEE/ACM Inter-
national Conference on Automated Software Engineering,
2008, pp. 327-336.

[19] Amir Michail, CodeWeb: data mining library reuse patterns,
in Proceedings of the international conference on software,
2011, pp. 827828.

[20] Java Examples. [Online]. www.jexamples.com
[21] Java frequently asked questions. [Online].

http://www.javafaq.com/
[22] Lee Wei Mar, Ye-Chi Wu, and Hewijin Christine Jiau, Rec-

ommending Proper API Code Examples for Documentation
Purpose, 18th Asia Pacific Software Engineering Conference
(APSEC), 2011, pp. 331-338.

[23] Iman Keivanloo, Laleh Roostapour, Philipp Schugerl, and
Juergen Rilling, SE-CodeSearch: A scalable Semantic Web-
based source code search infrastructure, in Proceedings
of the 2010 IEEE International Conference on Software
Maintenance, 2010, pp. 1-5.

[24] Lee Wei Mar , Ye-Chi Wu , and H.C. Jiau, Recommend-
ing Proper API Code Examples for Documentation Pur-
pose, in 18th Asia Pacific Software Engineering Conference
(APSEC), 2011, pp. 331 338.

[25] A.J. Ko and Y. Riche, The role of conceptual knowledge in
API usability, in IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 2011, pp. 173 176.

[26] Google inc. [Online]. www.google.com
[27] S. M. Shahnewaz. A Scenario Based API Recommendation

System Using Syntax and Semantics of Client Source Code,
M.Sc. thesis, CSE department, IUT, April, 2012.



34 IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 13, NO. 1, DECEMBER 2016

S. M. Shahnewaz is a software devel-
opment professional currently working in
Calgary, Canada area since 2015. Earlier he
did his M.Sc. from Islamic University of
Technology (IUT) Gazipur, Dhaka in 2012
and later he completed his second M.Sc.
with Software Engineering Specialization
from University of Calgary, Canada. His
main research interests are in the area of

recommended system for software developers, software release
readiness and planning and software product management.

Husne Ara Rubaiyeat has received her
B.Sc. in Computer Science and Engineering
from Rajshahi University of Engineerign
and Technology (RUET), Bangladesh in
2004. She started her career as software pro-
grammer and then pursued a Masters degree
in Biomedical Engineering from Kyung Hee
University, South Korea. She completed her
MS degree in 2010. She also completed a

Post-Graduate Diploma in Technical Education (PGDTE) from
Islamic University of Technology (IUT), Bangladesh in 2012.
Currently she is serving as a lecturer of Computer Science in the
Natural Science Group of National University, Bangladesh.

Hasan Mahmud has received his Bachelor
degree in Computer Science and Informa-
tion Technology (CIT) from Islamic Uni-
versity of Technology (IUT), Bangladesh in
2004. He did his Master of Science degree
in Computer Science from University of
Trento (UniTN), Italy in 2009. He had re-
ceived University Guild Grant Scholarship
for the two years (2007-2009) Masters study

and also awarded with early degree scholarship. He has different
research articles published in several international journals and
conferences. From 2009 he is working as an Assistant Professor
in the department of Computer Science and Engineering (CSE)
of Islamic University of Technology (IUT), Bangladesh. He is
now pursuing his PhD at IUT. His research interest focuses on
HCI based software systems, Gesture based Interaction, Machine
learning. He is the co-founder of SSL.

Md. Kamrul Hasan has received his PhD
from Kyung Hee University, South Korea.
Currently he is working as an Associate
Professor of CSE Department in Islamic
University of Technology (IUT), Gazipur,
Bangladesh where he has been serving since
2004. Previously, He obtained a B.Sc. in
CIT degree from IUT. He has long ex-
perience in software as a developer and

consultant. His current research interest is in intelligent systems
and AI, machine learning in HCI, software engineering, and social
networking. Dr. Kamrul is the founding director of the Systems
and Software Lab (SSL) in the CSE department of IUT.


