IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 14, NO. 1, DECEMBER 2018 1

Printed Bangla Character Image Segmentation: A
Font Invariant Approach

Muhammad Asif Hossain Khan, Anindya Sundar Paul and Muhammad Jawad Igbal*

Abstract—Optical character recognition is the technology
which enables conversion of photographed text into searchable
and editable documents. The complex nature of the feature set
of Bangla characters has made it quite difficult to design a fairly
accurate OCR. There have been multiple OCR solutions for
Bangla based on template matching and deep learning, but none
of them have achieved industrial grade accuracy. To date Google’s
OCR engine Tesseract is one of the best performing OCRs for
Bangla. OCR solutions have two major parts: segmentation and
recognition, with segmentation being the more challenging part.
In this research work we focused on improving the segmentation
module of Tesseract, identifying issues unique to Bangla and
resolving few of them. The proposed method successfully seg-
ments five vowel modifiers from their consonant bases where
Tesseract fails. Experiment results conducted using five different
fonts reveal that our proposed segmentation algorithm USHA
shows notable improvement over Tesseract in segmenting Bangla
scripts.

Keywords—Optical Character Recognition, Auto image read-
ing, Character segmentation

I. INTRODUCTION

Language is the most important component of human inter-
action and communication. Of the over 6000 [1] living lan-
guages right now, Bangla is one of the most spoken languages
in the world. Over 210 million [2] users around the world
speak in Bangla. This huge user base puts it as the seventh
most spoken native language in the world. Bangla literature
has a rich collection of books, ‘puthis’ and scriptures. Due to
the impact of aging and improper maintenance most of these
valuable documents are getting lost. Moreover, government
and non-government organization generate billions of pages
of documents each year, which in most cases do not have
any digital record. Thus digitization of such documents is
necessary to preserve such invaluable heritage. A properly
functioning optical character reader (OCR) is necessary for
this purpose. OCR solutions for international languages such
as English, Arabic, Chinese etc. have already been developed.
These solutions have achieved high accuracy and industrial
grade performance and application. However, not much work
has been done for Bangla OCR.

Google has developed a generalized OCR engine called
Tesseract [3] which works at an acceptable accuracy for many
simpler languages. Tesseract uses a very generic approach of

*Corresponding author.

Muhammad Asif Hossain Khan, Anindya Sundar Paul and Muhammad
Jawad Igbal are with the Deptartment of Computer Science and Engi-
neering,University of Dhaka, Dhaka, Bangladesh. e-mail: asif@du.ac.bd,
spaul.93 @gmail.com and jawad.iqbal92@gmail.com.

Manuscript received September 23, 2018; revised November 28, 2018;
Accepted December 7, 2018.

converting cursive scripts (that is scripts which have a head
or base line connecting most of the letters in a word), into
non cursive ones by splitting the head or base line. Due to
the abundance of unique features in the Bangla script, such
generic treatment doesn’t cut it in practice yielding mediocre
results [4]. For instance, the following limitations of Tesseract
have been identified:

o Baseline, similar to matra in Bangla, is the line that in
principle separates consonants from modifiers that reside
below it. Tesseract has no baseline detection. Thus it
cannot split the modifiers under the main character.

o Tesseract cannot split modifiers that go over the matra.

o Tesseract splits some character in their top part assuming
that part as matra, whereas they actually are not.

o Tesseract splits @ in the middle for some font such as
Solaimanlipi.

o Tesseract can’t split characters where the top part of
one character overlaps with some part of the previous
character. For example, the top part of character % in the
word %2, overlaps with the character 7.

o In case of &, Tesseract separates it into following seg-
ments:

Bangla script is very complex in nature which makes it
difficult to handle. The cursive nature makes it very difficult
to properly segment the characters from a line or a word image,
while features like ‘matra’ and shortened forms of vowels are
two of many unique features of Bangla script that make the
character segmentation process less reliable. Scripts that are
cursive in nature are difficult to segment since characters can’t
be easily separated via connected component analysis. Hence,
segmentation solutions try to define segmentation points in
the matra in order to split the actual characters. The main
challenge thus is to devise a proper algorithm to correctly
segment atomic character components from a Bangla word
image.

Another important issue is the vowel modifiers. The vowel
modifiers in Bangla are attached to their consonant bases in
such a way that it becomes really difficult to separate them. For
instance, the segmentation module of Tesseract OCR engine
fails to separate the following vowel modifiers:

o 2-kar:fo

o HKkar:

o S-kar: @

o © . Kkar: ¢

o W kar: ¢
Hence, a general approach of segmenting Bangla characters is
to segment a connected pair of consonant conjunct and vowel

IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 14, NO. 1, DECEMBER 2018 2

modifiers as a unit. The problem with this approach is that
the number of classes increases drastically - for each vowel
modifier one needs to consider number of consonant times
additional classes. For most recognition methods, especially
one based on deep neural network, it becomes particularly
difficult to accurately recognize characters with a high number
of classes. Hence, one of the major issues we had to face in
our research is handling the separation of the vowel modifiers.

In addition to these, Bangla has several other script features
that pose as obstacles in building a proper Bangla character
segmenter. Some of these difficult features are:

o © and ref, shorter form of ¥ (i.e.¥ + ¥ = ¥) - these two
characters are isolated characters that reside above the
matra with no part below matra line. In addition to that
chondro-bindu is formed from two separate components.
These difficulties may cause a Bangla segmenter design
to ignore these characters as garbage.

e % and °% have two separate components. Thus connected
component based analysis splits them as two separate
segments.

o Often the chondro bindu is attached to the matra making
it consider both as a single connected component.

o ¥ _ here the ref overlaps with the upper part of the
character. Thus separation of ref becomes very difficult
in this case.

o In the previous example, the upper part of © goes over the
previous character. This phenomenon is fairly common
in Bangla, making matra based character segmentation
approaches very difficult to design.

o 2 is not segmented properly if the part beneath matra is

disconnected, which is the case in many Bangla fonts.

SR A here the jo-fola is connected to ho, % in the

bottom for many Bangla fonts.

o T _ here when the connected component search is done,
the sequence in which each of them is found is =,
then the dot. Thus the dot is attached to the °1 rather
than the <.

o Some consonant conjuncts in Bangla have overlapping
mid sections causing them not to be split at matra.
Thus it becomes difficult to split characters in their mid
section. For example -"® 299 etc. for some fonts like
Solaimanlipi.

We have worked primarily on the segmentation of characters
from photographed documents of printed Bangla text. Initially
we have worked on developing our own character segmenter
from scratch. The steps involved in a complete segmenter
include preprocessing of the document (skew correction, noise
reduction, binarization etc.), physical page layout analysis i.e.
extracting blocks of text from a whole page which contains
images too. Then the text blocks require to be segmented into
lines of text. The lines are then segmented into individual
character images. We worked on line segmentation and then
character segmentation from the lines. However, we found out
that line segmentation is not as simple as just separating them
based on the space in between each line. Bangla lines might
contain overlapping regions between consecutive lines. This
issue eliminates the possibility of isolating each line by a

linear scan of y-axis histogram of lines. So we looked into
other available solutions to this problem.

The source code for Google’s open source multilingual
OCR project, Tesseract is available on Github [3]. It is to be
noted that the source code is totally undocumented and very
difficult to read through. We started to look into the source
code and figured out how Tesseract segments characters. We
found out the module that identifies text lines in a given image
of text. As we looked into more details, we came across
the implementation of character splitter module of Devnagari
scripts among which Bangla is one. The module primarily
works on isolating characters by splitting the shirorekha of
the script. It receives the image of a line of text, finds
the shirorekha, splits the shirorekha based spacing between
characters. A major problem that we found out in this module
is that it does not separate the Bangla vowel modifiers from
the base consonants.

An ideal OCR solution that recognizes characters using deep
neural networks, benefits from having number of classes as
low as possible. Tesseract’s character segmentation doesn’t
provide that. If we do not separate the modifiers from their
base character, the total number of classes becomes multiplied
by 10 due to the ten vowel modifiers in Bangla language.
Being able to separate those modifiers reduces the number
of classes drastically, thus leading to a more robust classifier
and hence a more accurate OCR. While building our own
solution, USHA, in order to segment the modifiers, we had
to divide the line into three regions using two hypothetical
lines. The top line is the shirorekha which can be identified
using a y-axis histogram. The base line is the line which
separates the base character from the bottom modifiers. Our
first task was to find the base line. With the base line identified,
we were able to divide the line into three regions. The top
region contains the top modifiers, the bottom region contains
the bottom modifiers and the mid region contains the base
characters. Then we used a template matching based approach
to identify the components in the top region to check if it
is a part of a top modifier. We did the same task for the
bottom modifiers. As we identify the modifiers, we split them
from the connecting characters. The final contribution was
creating separate images of characters from the split images
of texts. We created one image per character by finding out
connected components. However, dots which are part of a few
character pose some problems. We handled the dots by finding
out their position in the image and then appending to their
corresponding base character. We took two sets of data, each
containing one page of text. We replicated those documents for
four different fonts. As we ran our experiments, we were able
to achieve consistent font invariant segmentation accuracy for
USHA of over 90% which was significantly better than that
of Tesseract.

Our Contribution are as follows:

o We incorporated Tesseract’s approach of segmentation in
our proposed method and improved the original perfor-
mance.

o We achieved separation of five important vowel modifiers
of Bangla script with high accuracy, which we believe is
a unique contribution to the field of Bangla OCR.

IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 14, NO. 1, DECEMBER 2018 3

o In the proposed method, we detected the baseline of
Bangla line image with the help of statistical analysis.
We also improvised a depth first search based solution
in order to handle dot symbols in the form of consonant
components.

II. LITERATURE REVIEW

Tesseract is currently one of the most popular OCR engines
available out there. More importantly it is an open source
OCR engine available for anybody to work with it. This OCR
engine was initially developed at HP between 1984 and 1994.
At that time, Tesseract had a significant lead in accuracy
over all of its competitors available in the market. In late
2005, HP released Tesseract for open source and Google has
taken over the maintenance and development of Tesseract from
2006. The preprocessing step of OCR in the Tesseract OCR
engine involves page layout analysis. The page layout analysis
produces a binary image with polygonal text regions defined.
The first step involves connected component analysis where
the outlines of all the connected components are stored. The
connected components are called blobs. All the blobs are likely
to fit a model of non-overlapping, parallel, but sloping lines.
By sorting the blobs according to x-coordinate and assigning
blobs to unique text lines, all the lines in the file are identified.
The Tesseract then tests the lines to see if the font is fixed
pitch. If so then it is simple to chop the characters based
on their spacing. Otherwise Tesseract analyses the horizontal
gaps in the vertical range between baseline and mean line to
chop the characters [5]. Tesseract can be trained for different
languages. Since Tesseract uses a pattern matching approach,
the performance depends immensely on how the trained data
has been prepared and what character and word combinations
are provided there [6]. Also due to the fact that Tesseract uses
a generalized approach for all the languages out there, perfor-
mance for some languages like Bangla is very underwhelming
and has a lot of room for improvement.

Ray Smith [7] proposed a hybrid page layout analysis al-
gorithm for the Tesseract OCR engine, which utilizes bottom-
up column gap detection by detecting tabstops. He based his
method on whitespace based analysis of rectangular regions.
The preprocessing step begins with detecting vertical lines
using Leptonica library and filtering the connected components
(CC) based on height and width. Smaller CCs are filtered
out and stroke width is calculated. Next step involves finding
tab-stops as line segments where the initial candidate CCs
are searched from the list of CCs in the preprocessing step.
Left and right tabs are thus detected and filtered. The CCs
are then grouped by lines and lines with enough number of
CCs are kept. Then the lines are connected using tab-stop
points. Finally the connected lines are aligned at their tab-stop
ends. Finding the column layout involves the use of column
partition (CP) objects, which are collections of CCs found
using horizontal and vertical scans. The CP objects don’t cross
the tab-stop line and a set of CP objects formed by a single
horizontal scan is called a CP set. CP sets are considered to
be potential candidates for column region and the candidate
CP sets are verified based on their coverage using an iterative

approach. Finally, the CP sets are matched to best upper and
lower neighbors and thus CP flows are created, which then in
turn sorted into reading order for putting them back into the
output. Polygon boundaries are applied to ensure minimal use
of vertices.

Chowdhury et al. [8] worked on improving the Tesseract
OCR engine for Bangla language. Tesseract uses trained data
of different languages to perform character recognition. The
authors created a huge collection of characters and constructed
the trained data for Bangla language.

Alam et al. [9] proposed a complete Bangla OCR solution
for printed characters using deep learning. The purpose of this
research was to develop a complete system that can recog-
nize printed Bengali characters. The primary steps involved
in the research were preprocessing, feature extraction and
then classification. During preprocessing, the document was
digitized by scanning. Then it was binarized into only black
and white. Noise was removed from the binarized document
using low pass filter. Any kind of skew was corrected by
rotating the document. Finally the document was segmented
to get individual characters. Segmentation process involved
segmenting the document into lines by measuring horizontal
pixel frequencies, then segmenting the lines into words by
measuring vertical pixel frequencies and then segmenting
the words into characters by piecewise linear scan. Before
segmentation, the lines were divided into three zones by
two lines - head line and base line which were used in
segmentation. After character segmentation, all the characters
were scaled to 44x44 size. Characters were represented as
a vector of features. First all the connected components of
each character were detected using DFS. Center of mass
(centroid) of each component was calculated. During the DFS,
bounded rectangle of each component was found by taking
the leftmost, rightmost, topmost and bottommost coordinates.
The bounded rectangle was divided into four regions following
the 2D coordinate system where the centroid was the origin.
Each connected components were represented using a Freeman
chain code. The starting point of the chain code was redefined
so that resulting sequence of numbers form the minimum
integer possible. Then slope distribution was generated. Each
component has 4 regions and each region has 8§ directional
slopes giving a total of 32 slopes. All the directional slopes
were then normalized. If the a character consisted of multiple
components then average of those 32 directional slopes were
taken.

Chaudhuri et al. [10] also conducted a research on develop-
ing complete Bangla OCR for printed characters. The research
was performed as such it might be applicable with little
modification to other subcontinental scripts similar to that used
in Bangla. The paper first analyses morphological properties of
the Bangla text by dividing each line of text into three zones -
upper, middle and lower - using two horizontal lines - the head
line and the base line. Text digitization was done by a flat bed
scanner and gray-tone images were converted into two-tone
by means of a histogram based thresholding approach. Skew
correction was done using a custom method. In this method
the upper envelope for each line of text are detected which
contains head-line information. Then they used the longest

IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 14, NO. 1, DECEMBER 2018 4

DSL to determine the skew angle. Text line detection and
zone separation were done by calculating row-wise sum of
gray values. The head-line logically contains the peak value.
For finding the base-line they divided the text line region
into two halves and considered only points in the below
half. The line with the highest number of lowest points in
it for each vertical scan is considered the base-line. After
line segmentation they went ahead with word and character
segmentation. This was done using vertical scans, where either
the black pixel count was put for the scan line value or O
in case of two or less black pixels. Thus words are easily
separated but character separation required removing the head-
line and piecewise linear scanning. For characters that get
divided in two sub-segments in this approach a recovery rule
is applied: a sub-segment is a character segment only if it
touches both the head and base-line; else it is a part of the
character along with the next sub-segment.

Bhowmik et al. [11] proposed new approach to Bangla
handwritten character segmentation based on structural fea-
tures. At first a rather small manually generated training set
was used which was later expanded using a semi-supervised
bootstrapping technique. The character segmentation was done
using a supervised approach based on contour pattern match-
ing. A couple of specific patterns coming from both lower
and upper contour were detected as a candidate segmentation
point and a feature vector is calculated from such segmentation
points. A few threshold values are used to find the initial
candidate set. Binarization and edge smoothing techniques are
applied before generating the candidate set. Skew correction
is performed based on matra detection and calculating the
angle between the base horizontal line and the matra. Finally
the training candidate set is labelled as segmenting and non-
segmenting points and used for training a Support Vector
Machine (SVM) with add-in bootstrapping.

Devanagari has many complex properties most notable
of which is the shirorekha. Sahu et al. [12] proposed a
new method for shirorekha removal along with a complete
segmentation scheme. First they detected the lines using row
wise blackpixel count and removed the shirorekha in the
process. Similar approach was used for word segmentation
and character segmentation from words using pixel count as
the parameter and some threshold values.

Another difficulty concerning Bangla OCR is the cursive
nature of the script. Bhowmik et al. [11] proposed a super-
vised bootstrapping approach based on an SVM classifier.
Segmentation of text lines is another vital step in Bangla
OCR [13]. Inaccurately segmented text lines cause errors in
recognition. Anupama et al. [14] proposed an algorithm based
on multiple histogram projections. They used morphological
operators to extract features of the image. The horizontal
projection of the text image was analyzed to find peak values
and detect them as lines. Thresholding approach was taken to
determine segments from the image. False line elimination
was done using one more threshold value. Finally vertical
histogram based analysis was used for segmenting into lines,
lines into words and words into characters. Garain et al.
[15] proposed a technique that leverages fuzzy multifac-
torial analysis for segmentation and recognition of printed

touching Devanagari and Bangla characters. They developed
a predictive algorithm identifying prospective cut columns
for segmenting the touching characters. Bansal et al. [16]
also proposed a two-pass method for segmenting touching
Devnagari characters. They specially focused on composite
characters. Their method uses the structural properties of the
script. In the first pass characters are separated into individual
symbols using horizontal and vertical projection. Statistical
information about the bounding box of the symbols is then
used to determine whether the symbol represents a composite
character.

Variance in font nature is another issue researchers have
to face while building a Bangla OCR solution. Sarkar et al.
[17] proposed a font invariant solution for segmentation of
Bangla word images. The method dissected a Bangla word
image into three zones - upper, middle and lower. Matra
region was detected and potential segmentation points were
listed. Segmented components were categorized and analyzed
to achieve a fairly accurate segmentation output despite font
variance. Sarkar et al. [18] proposed another font invariant
algorithm to segment basic Bangla characters and focused on
segmenting connected components. However, they considered
mostly vertical segmentation with partial horizontal dissection.
Their proposed method often over segments the characters and
performs poorly for fonts in italic.

In an OCR, the binarization of gray-scale images may hold
important information regarding segmentation of touched and
overlapped characters. Lee et al. [19] proposed a methodology
where the segmentation areas were determined using projec-
tion profiles and topographic features extracted from gray-
scale images. A multi-stage graph search algorithm was used
to find a nonlinear character segmentation path in each are.
Finally a recognition based segmentation method is devised
to verify the character segmentation paths.

Several special issues also arise in license plate
segmentation, including complex environment, rotation,
lighting and low contrast. Pratt et al. [20] proposed a
histogram equalization based approach to solve these issues.
Guo et al. [21] improved upon that solution by using texture
property, aspect ratio, and color similarities. Hough transform
was used for correcting rotation, while feedback based
self-learning approach was taken to adaptively adjust the
parameters. The dirt problem was also addressed in the form
of hybrid binarization.

Scripts with cursive nature similar to Bangla are also
highly relevant in OCR study since they cause issues in
the segmentation stage. Cheung et al. [22] proposed a word
segmentation algorithm based on word/subword overlapping
of Arabic script. The recognition-based segmentation tech-
nique required no accurate character segmentation path to be
determined [23]. Similar to the works by Al-Yousefi et al. [24]
and Casey et al. [25], the character segmentation was done as
a byproduct of the recognition method. The five stages of the
proposed methodology were (1) image acquisition, (2) prepro-
cessing, (3) word segmentation and character fragmentation,
(4) feature extraction and (5) classification. A feedback loop
was used to connect segmentation and recognition stages.

IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 14, NO. 1, DECEMBER 2018 5

III. RESULT ANALYSIS

A. Dataset description

For our experiment to produce unbiased result, we wanted
to select such dataset so that it contains a uniform distribution
of various characters that are found in Bangla scripts and
represents the natural usage of Bangla. A body of text taken
from a traditional literature is a perfect source of text that
complies with our requirement. So we took two bodies of text

from two famous novels, frrgfs (Nishkriti) by Sarat Chandra
Chattopadhyay (later mentioned as dataset 1) and o= 3Ife
(Chokher Bali) by Rabindranath Tagore (later mentioned as
dataset 2).

We prepared two full pages of text from the two books at
font size of 12 and used four different fonts for each of the
pages creating a total of eight different. Then we converted
the pages into image files with 300 DPI resolution and used
them for our experiment.

The datasets contain vowels, consonants, vowel modifiers
and consonant conjucts. Challenges such as separating conso-

nants and vowel modifiers " and 5 from ™™ and ¢ from ES)

segmenting consonant conjuncts in a word (¥ from TR
and ¥ = from =7 etc. are available in the datasets.

B. Measurement of accuracy

To compare performance of USHA with Tesseract, we used
accuracy of segmentation. It is difficult to define an ideal
segmenter since the requirements of a segmenter may vary
from one to another based on how the segmentation result is
used in the recognizer. We define an ideal segmenter to be
able to segment all the vowels, consonants, vowel modifiers
and consonant conjuncts.

We manually counted the number of incorrect segmentations
i.e. segmentations that doesn’t represent any of the afore-
mentioned segmentation units. We counted the total number
of segmentations that should result from an ideal segmenter
and calculated the percentage of wrong segmentations that
USHA and Tesseract produced. We then calculated accuracy
by subtracting the percentage of wrong segmentations from
100.

C. Result Analysis

TABLE I: First Approch

Incor-
Incor-
rect Impro-
rect
Segme- Accu- vement
Segme- . Accu-
. ntation racy Over
ntation racy
Font for ; of Tess-
for Tess- of Tess- eract
USHA 5 USHA 5 &
(Out eract eract n
of 1495) (Out USHA
of 1495)
Apona 89 190 94.05% | 86.96% 7.09%
Kalpurush 22 157 98.53% | 89.49% 9.04%
Siyam Rupali 52 178 96.52% | 88.09% 8.43%
Solaimanlipi 72 203 95.18% | 86.42% 8.76%
Averege 96.07% | 87.74% 8.33%

TABLE II: Second Approch

Incor-
Incor-
rect Impro-
rect
Segme- Acc- vement
Segme- . Acc-
. ntation uracy Over
ntation uracy
Font for of Tess-
for T of T "
USHA °% | USHA ess | eac
(Out eract eract in
of 1495) (Out USHA
of 1495)
Apona 49 86 96.32% | 93.53% | 2.719%
Kalpurush 67 161 94.97% | 87.90% | 7.07%
Siyam Rupali 51 126 96.17% | 90.53% | 5.64%
Solaimanlipi 95 178 92.86% | 86.62% | 6.24%
Averege 95.08% | 89.65% | 5.43%

As we can see from the experimental results presented in Ta-
ble I and IT USHA performs significantly better than Tesseract
for the 4 popular Bangla fonts we have tested — Apona, Kalpu-
rush, Siyam Rupali, Solaimanlipi. The segmentation output of
Tesseract for a sample line in Fig. 1(a) from dataset 1 (for
the Kapurush font) is shown in Fig. 1(b). The segmentation
output of USHA for the same line is shown in Fig. 2.

SIREE SREA GIRIS! ARAR | §2 e A ¢ 2 @2 Yueret @b el

(@)

o T 1T oW A oy =
char-0.png char-1.png char-2.png char-3.png char-4.png char-5.png char-6.png
char-7.png char-8.png char-9.png char-10.png char-11.png char-12.png char-13.png
char-14.png char-15.png char-16.png char-17.png char-18.png char-19.png char-20.png

g & & 3 [=
char-21.png char-22.png char-23.png char-24png char-25.png char-26.png char-27.png
char-28.png char-29.png char-30.png char-31.png char-32.png char-33.png char-34.png

*

LA A
char-35.png char-36.png char-37.png char-38.png char-39.png char-40.png char-4l.png

®"

8 2 5 { ¢ <q <
char-42.png char-43.png char-44.png char-45.png char-46.png char-47.png char-48.png
kU N A C ¢
char-49.png char-50.png char-51png char-52png char-53png char-54.png char-55.png

2 f 1% S 1 3
char-56.png char-57.png char-58.png char-59.png char-60.png char-6l.png

Fig. 1: (a) Sample line image in Kalpurush (b) Tesseract’s
segmentation of the sample line.

As The separation of vowel modifiers and proper handling
of dot symbol in Bangla consonants have drastically improved
the segmentation accuracy of USHA. Tesseract fails at cases
like segmenting T etc.

Rare but nonetheless present, Bangla compound character
features with complex nature have barred USHA from achiev-
ing higher accuracy. Also there are several issues with certain
consonant vowel modifiers with disjoint components which
USHA couldn’t handle. Handling of these issues in future
should yield significantly higher accuracy.

IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 14, NO. 1, DECEMBER 2018 6

approach in the form of USHA. We have added a new and
unique contribution to Bangla OCR development by handling
of vowel modifiers as separate characters. Our segmentation
solution has several limitations due to the complex nature of
the Bangla script and unique and rare features of the Bangla
compound characters. We believe the Bangla printed character
segmentation issues we have discovered during our research
will provide a convenient checklist for future works in this
field.

v & 0 =& O & .
char-O.png char-lpng char-2png char-3png char-4png char-5.png char-6.png
4 q q 5 I = o
char-7.png char-8.png char-9png char-10.png char-1lpng char-13.png char-14.png
char-15.png char-16.png char-17.png char-18.png char-19png char-20png char-2l.png
i 8 & w A & [
char-22.png char-23.png char-24.png char-25.png char-26.png char-27.png char-28.png
Kl <d | < I 4 =
char-29.png char-30.png char-3lpng char-32png char-33png char-34png char-35.png
char-36.png char-37.png char-38.png char-39png char-40png char-4lpng char-42.png

*®

& e 0 I g

char-43.png char-44png char-45.png char-46.png char-47.png char-48.png char-49.png
®

T [= i @ & s
char-50.png char-51png char-52.png char-53.png char-54png char-55.png char-56.png

3 - Y 9 - [4 \©
char-57.png char-58.png char-59.png char-60.png char-62png char-63.png char-64.png

I C 2 1 5} © I
char-65.png char-66.png char-67.png char-68.png char-69png char-70.png char-71.png

Fig. 2: USHA’s segmentation of the sample line of Fig.

D. Limitations of USHA

There are several cases where USHA falls short and has
room to improve on. In addition to the most of the general
segmentation challenges found in our research, USHA has the
following limitations:

o The statistical approach to detecting baseline depends on
sufficient input size. If there is only one line, or lines
with short width, it may not detect the correct baseline.

o Superscripts and subscripts cannot be handled in the pro-
posed system because the approach works on a uniform
text region with a single font and size.

« © and 1 Kar has two wrapping parts around the base
character. These two are segmented separately and need
to be reassembled in post recognition steps.

o f2 and “t-kar when used with © or ¥ %) cannot be

split because of the overlapping upper portion. Y2 _The
dot overlaps with the « and ¢ kar. So they cannot be
separated.

e O - here the chondro-bindu sits in the middle of the
two characters making it problematic to isolate the two

characters.

IV. CONCLUSION

Bangla is not only our native language but also one of the
most spoken languages in the world today. For our progression
as a nation by means of digitization of our offices and preser-
vation of our vast and rich literature collection, designing an
effective Bangla OCR is now a very important task for the
researchers. Our goal was to work towards building a complete
OCR solution for Bangla. In this paper we propose a new ap-
proach to font invariant Bangla printed character segmentation
based on the Tesseract OCR engine with the separation of
vowel modifiers, promising an improved recognition perfor-
mance using machine learning and deep neural networks.
From the results we can see that we have achieved significant
improvement over the Tesseract segmenter with our improved

(1]
[2]

(3]
[4]
(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

http://www.nationsonline.org/oneworld/languages.htm (Accessed on:
November 19, 2016)

https://en.wikipedia.org/wiki/Bengali_language (Accessed on: Novem-
ber 21, 2016)

https://github.com/tesseract-ocr (Accessed on: November 16, 2016)
https://en.wikipedia.org/wiki/Bengali_alphabet (Accessed on: Novem-
ber 22, 2016)

Smith, R., 2007, September. “An overview of the Tesseract OCR
engine”, in Document Analysis and Recognition, 2007. ICDAR 2007.
Ninth International Conference on (Vol. 2, pp. 629-633). IEEE.
Smith, R., Antonova, D. and Lee, D.S., 2009, July. “Adapting the
Tesseract open source OCR engine for multilingual OCR”, in Pro-
ceedings of the International Workshop on Multilingual OCR (p. 1).
ACM.

Smith, R.W., 2009, July. “Hybrid page layout analysis via tab-stop de-
tection”, in 2009 10th International Conference on Document Analysis
and Recognition (pp. 241-245). IEEE.

Chowdhury, M.T., Islam, M.S., Bipul, B.H. and Rhaman, M.K., 2015,
November. “Implementation of an Optical Character Reader (OCR) for
Bengali language”, in Data and Software Engineering (ICoDSE), 2015
International Conference on (pp. 126-131). IEEE.

Alam, M.M. and Kashem, M.A., 2010. “A complete Bangla OCR
system for printed characters”, JCIT, 1(01), pp.30-35.

Chaudhuri, B.B. and Pal, U., 1998. “A complete printed Bangla OCR
system”, Pattern recognition, 31(5), pp.531-549.

Bhowmik, T.K., Parui, S.K., Roy, U. and Schomaker, L., 2016. “Bangla
Handwritten Character Segmentation Using Structural Features: A
Supervised and Bootstrapping Approach”, ACM Transactions on Asian
and Low-Resource Language Information Processing (TALLIP), 15(4),
p-29.

N. Sahu, M. Sahai. “Segmentation of Devanagari character”, in 3rd
International Conference on Computing for Sustainable Global Devel-
opment (INDIACom), 2016.

Billah, U.H. and Khan, M.A.H: “A Systematic Literature Review on
Segmentation and Recognition of Printed Bangla Characters”, IUT
Journal of Engineering and Technology (JET), Vol. 13, No. 1, pp. 1-8,
2016.

Anupama, N., Rupa, C. and Reddy, E.S., 2013. “Character
segmentation for Telugu image document using multiple histogram
projections”, in Global Journal of Computer Science and Technology.
Garain, U. and Chaudhuri, B.B., 2002. “Segmentation of touching char-
acters in printed Devnagari and Bangla scripts using fuzzy multifacto-
rial analysis”, IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 32(4), pp.449-459.

Bansal, V. and Sinha, RM.K., 2002. “Segmentation of touching and
fused Devanagari characters”, Pattern recognition, 35(4), pp.875-893.
Sarkar, R., Das, N., Basu, S., Kundu, M., Nasipuri, M. and Basu, D.K.,
2008, August. “A two-stage approach for segmentation of handwritten
Bangla word images”, in Proceedings of International Conference on
Frontiers in Handwriting Recognitions (pp. 403-408).

Sarkar, R., Malakar, S., Das, N., Basu, S., Kundu, M. and Nasipuri, M.,
2012. “A Font Invariant Character Segmentation Technique for Printed
Bangla Word Images”, in Proceedings of the International Conference
on Information Systems Design and Intelligent Applications 2012
(INDIA 2012) held in Visakhapatnam, India, January 2012 (pp. 739-
746). Springer, Berlin, Heidelberg.

Lee, S.W., Lee, D.J. and Park, H.S., 1996. “A new methodology for
gray-scale character segmentation and recognition”, in IEEE Transac-
tions on Pattern Analysis & Machine Intelligence, (10), pp.1045-1050.
W. Pratt. Digital Image Processing. Hoboken, NJ:Wiley.

IUT JOURNAL OF ENGINEERING AND TECHNOLOGY (JET), VOL. 14, NO. 1, DECEMBER 2018

[21] Guo, J.M. and Liu, Y.F.,, 2008. “License plate localization and character
segmentation with feedback self-learning and hybrid binarization tech-
niques”, in IEEE transactions on vehicular technology, 57(3), pp.1417-
1424.

[22] Cheung, A., Bennamoun, M. and Bergmann, N.W., 1997. “A new word
segmentation algorithm for Arabic script”, in DICI”A, 97, pp.431-435.

[23] Cheung, A., Bennamoun, M. and Bergmann, N.W. 2001. “An
Arabic optical character recognition system using recognition-based
segmentation”, in Pattern recognition, 34(2), pp.215-233.

[24] Al-Yousefi, H. and Upda, S.S., 1992. “Recognition of Arabic charac-
ters”, in IEEE Transactions on Pattern Analysis & Machine Intelli-
gence, (8), pp.853-857.

[25] Casey, R.G. and Lecolinet, E., 1996. “A survey of methods and
strategies in character segmentation”, IEEE transactions on pattern
analysis and machine intelligence, 18(7), pp.690-706.

Muhammad Asif Hossain Khan

Anindya Sundar Paul

Muhammad Jawad Iqgbal

	Introduction
	Literature Review
	Result Analysis
	Dataset description
	Measurement of accuracy
	Result Analysis
	Limitations of USHA

	Conclusion
	References
	Biographies
	Muhammad Asif Hossain Khan
	Anindya Sundar Paul
	Muhammad Jawad Iqbal

