
AN IMPROVED ALGORITHM FOR FINDING OUT THE PEG STATUS
AT ANY MOVEMENT OF M.TH DISK OF THE TOWER OF HANOI

Sardar Anisul Haquel Md. Abdul Mottalib2

Abstract

Tower of Hanoi is a familiar puzzle used to show the principle of mathematical induction, the
power of recursive algorithms etc. lts general solution is based on recursion method that can
be defined generally as the method of solving a problem by dividing it into two or more sub-
problems, each of them are same like the original problem in nature, but smaller in size.
This paper shows the status of all three pegs after each movement of any disk. lt also
computes the moves of a particular disk mathematically without solving all disks' movement.
Based on this mathematical analysis a new algorithm is devised here.

l. Introduction

The Tower of Hanoi, a popular puzzle of the late nineteenth century consists of three pegs

mounted on a board together with disks of different sizes, with the largest on the bottom

[1 ,2,4,5,121. No existing algorithm is able to describe the status of pegs at any movement of
a particular disk without solving all disks movement. lts general solution is based on
recursion method that can be defined generally as the method of solving a problem by
dividing it into two or more sub-problems, each of them are same like the original problem in
nature, but smaller in size [1 ,2,4,5,121.

Many researchers have tried to state good solutions of the tower of Hanoi problem in

different solution [3,6-11]. In [6] a non-recursive solution of multi-peg tower of Hanoi has

been given, where intermediate peg is more than one. lf we apply this analysis in our single
temporary peg tower of Hanoi problem it wil l compute all disks movement to tell the

description of each peg after each movement. Also in [3] that computes all disks to solve a
single disk's movement.

The rules of the tower of Hanoi can be summarized as follows: lf n disks are arranged on the
first peg largest at the bottom and each disk is sitt ing on a large disk then transferring of the
n disks to the third peg wil l characterize the problem according to the following five
conditions:

1. Student, Department of Computer Science and Inlormation Technology,
lslamic University of Technology, Board Bazar, Gazipur 1704, Bangladesh

2. Head, Department of Computer Science and Information Technology,
lslamic University of Technology, Board Bazar, Gazipur 1704, Bangladesh

1 9

Only one disk at a time may be moved;
Only a topmost disk may be moved;
A disk can not be placed on a disk smaller than itself;
A minimum number of disk moves are to be moved; and
Only one intermediate location may be used.

Now have a look to the problem. lf total disk is 3 (i.e n=3) then to solve this problem, first we
have to transfer top two disks to second peg (temporary peg) otherwise we can not move the
larger disk as shown in Figure-1.1. Again to do so we have to transfer smaller disk to third
peg (destination peg). But for this case we have to take this peg as temporary peg. Then
move the medium disk to second peg. After passing the smaller disk from third peg to

second peg, only then we can move larger disk to third peg. We have now two disks to be
transferred to the third peg as shown in Figure-1.2. Next move the smaller disk to first peg.

Then move the medium disk to third peg and finally the smaller one to the third peg as
shown in figure -l .3.

1)

.+. II
Source Temporary Destination

Figure'1 .1 : Initial position with three disks in source peg

i)
i i)
i i i)
iv)
v)

2)

3)

I rl
I - -

Temporary Source Destination

Flgure-l.2: After three movements.

II-
Source Temporary Destination

Figure-1 .3: After complete the game (seven movements).

20

So we need seven moves. These moves are given below:
i) Move smaller disk from first peg to third peg.

ii) Move medium disk from first peg to second peg.

ii i) Move smaller disk from third peg to second peg.

iv) Move larger disk from first peg to third peg.

v) Move smaller disk from second peg to first peg.

vi) Move medium disk from second peg to third peg.

vii) Move smaller disk from first peg to third peg.

ll. Representing a big Number

One crit ical issue is to represent a large number in any tower of hanoi algorithm. We can
solve this problem by using exponential. For example, if we represent 1125899906842624
then it is not possible to show it by any variable in C, C++ or pascal language. But we can
easily represent it by 250. Next section discusses some mathematics and shows that any
movement of tower of Hanoi can be represented as the summations of one number of this
form 2^ and the other number of the same form with a multiolication. The mathematics
discussed in the next section use this notation to represent any movement number.

l l l . Mathematics Behind Tower of Hanoi

lf total disks are n then n{h disk wil l move one time, (n-1){h disk wil l move two times and
(n-2){h disk wil l move four times and so on. We know that the total number of movement
is eoual to 2n -1.

So,
1 +2+4+8+...+2n-1 =2n -1

or ,20 +21 +22 +23 +. . .+2n- t +. . .+2n'1 =2" -1

Here m is a number indicating m-th disk from top. So the total movement of mth disk is

2n-*. The condition to start one particular disk's (m-th) movement is to remove m-1 disks
from pegl to peg 2 or peg 3. So any particular disk m will start moving at the move
number 2t '1 .

A disk may start its lourney from first pole to second pole or third pole. lt depends on the
position of the disk from last disk. lf i ts position is odd it starts its journey moving third
pole first othenrvise second pole. lf we write 1 to 2n-r consecutive integers then we can
specify the movement number of n{h disk, which is zn-r. lt divides the movement number
into twd subgroups (1 to 2n-1-1 and 2n-r+1 to 2n -1)

In this two subgroups, the movement of (n-1)-th disk can be easily specified as 2n'2 and
2n-2 +2n-1 , because first subgroup denotes the movement of (n-1) disks from 1-st peg to

1)

2)

21

3)

2-nd peg and second subgroups denotes the same thing from 2-nd peg to 3-rd peg. In
this way we can specify all other disks' movement.
The top disk wil l move peg 3 first where peg 2 is used as temporary peg. In first
subgroup there is only one move for (n-1)-th disk that is pegl to peg 2. In second
subgroup there is only one move for (n-1)-th disk that is peg 2 to peg 3. in this way we
can find details of all other disks that is written in (iv) of the following observations.

The following observations are made in this study. Let total disks is n and m-th disk
denotes one particular disk where 1<=n't<=r].
(i) Total movement of the m{h disk is equal to 2n-'.
(i i) The m-th disk starts its journey from 2'-1.
(i i i) The difference between two movements of that particular disk is equal to: 2'.
(iv) lf the position of a particular disk is odd from bottom it starts with its journey from

pegl to peg3. Otherwise pegl to peg2.

lf i t goes to peg3 first then it continues its journey in this sequence:
Peg 1 to peg 3
Peg 3 to peg 2
Peg 2 to peg 1
Peg 1 to peg 3

lf it goes to peg2 first then it continues its journey in this sequence:
Peg 1 to peg 2
Peg 2 to peg 3
Peg 3 to peg 1
Peg 1 to peg 2

One interesting thing is that if we create a full binary search tree with 1 to 2n-1
consecutive numbers then each level wil l represent the movement of one dlsk. The
explanation of this similarity is based on the formula derived in next section. That is:
between two consecutive movements of a particular disk there exists only one movement
of another disk that is bigger than that particular disk. This formula is true for all disks
except the bottom most disk as there is no disk that is bigger than that. this is also true
for a uniform set of disks. Uniform set of disks with m disks (1<=fft<o, where n is the
number of total disks) is the set containing the top most disk that means first disk,
second d isk, th i rd d isk, (m-1)- th d isk, m-th d isk. For example: uni form set of d isks
with 3 disks is the set of disks containing first, second, and third disk. In binary search
tree the first node of any level x (with number 2'-1; right children construct a set of
consecutive integers from 1 to 2' '1-1 ,it we visit the right children in in-order rule. The
number 2"-1 indicates the first movement of x{h disk and the right children indicates the
movement of the uniform set of disks with (x-1) disks. In this way if we apply this method
we can get the next movement of x{h disk in the same level of the binary tree. For
example: top level (i.e. root) indicates the bottom most disk's movement and the bottom
most leaves indicate the top most disk's movement. For example, let n=4 whose
corresponding binary tree structure is shown in Figure-2. Then the number of movement

(

I

4)

22

need to complete the Tower of Hanoi is equal to24-1, or 15. lf we make
binary search tree then the top level represent the movement of bottom disk.
same way the leave indicates the movement of top disk.

a complete
And in the

Figure2: A complete binary search tee with I to 15 consecutive integers.

5) Previous discussion says about the starting movement of any disk along with the
difference between its two consecutive moves. so, any particular disk's (let m) p-th
movement can be expressed as2*1+2''(p-1)

6) Before starting any particular disk's (let m) movement, all disks smaller than it must be
removed from source peg to the peg other than the peg that will first visited by m-th disk.
We can treat this as a tower of hanoi problem with (m-1) disks. After removing m-th disk
we get (m-1) disks pilled up in a peg. Before removing (m+1)-th disk we have to remove
(m-1) disks to the peg where m-th disk is placed. So, again a smalltower of hanoiwith
(m-1) is needed. As (m+1)-th disk is removed to a blank peg, all disks smaller than
(m+1)-th disk now must be pilled up on it in order to create a blank peg for (m+2)-th disk.
From the above discussion, it is clear that there exist two small tower of hanoi game with
(m-1) disks between two consecutive movement of m-th disk.
This two tower of hanoi games need total 2*1-1+2*1-1 movement. But the difference
between two consecutive movement of m-th disk is 2'. so. there must exist 2'-1
movements.
Now look at the calculation:
2^-1=2*1-1+2*1 + x

23

7)

OI , X =1

Here x indicates the number of movements held by the disks that is larger than m-th disk
belween two consecutive movement of it. We get x as 1. So there exist only one
movement that is held by disk larger than m-th disk between its two consecutive
movement. The choice of this disk and its present peg along with destination peg need
some explanation.

lmagine upper (m-1) disks as one disk. Think that this set of disks wil l behave like a
single disk. Now play the tower of hanoi game. As the total number of disks is now (n-
m+1), to accomplish this game it needs 2n-m+1-1 movements. But lo remove the set of
disks from one peg to other 2'-1 movements is required. And the number of movement
held by this set of disks is 2n-m+r-1 or,2n-^. So actual movement wil l be:
Zn_m+l -1 -2n-m+2n_. .(2r_1

)
=>2n-^r1 - 1 -2n-m+2n'm+m-2n-m

_ >Zn
- m+ 1 _ 1 +2r _2n. m+1

=>2n-1

=> equal to the number of actual movement of n disks.

Previously it is discussed that there exists only one movement held by the disk larger
than m-th disk between two consecutive movement of m-th disk. So we have one thing
left for the implementation of the desired algorithm that is the selection of this disk and
its present location and its destination. As we think (m-1) disks as a single disk, we can
think m-th disk as 2-nd disk and (m+1)th disk as 3-rd disk and so on. This
transformation can be done by the following equation:
New position = old position - m + 1

Now we can think it as a simple tower of hanoi with (n-m+1) dlsks. So the disk choice
becomes simple. And we have to find out the movement of 2-nd disk's movement.

lV. Description of the Proposed Algorithm

1) Now think about algorithm implementation. In this paper we wil l discuss about an object
oriented approach. We treat each disk as an object. The set of (m-1) disk is treated as an
object. We will maintain three peg object to tell the situation of each peg after any
movement. This peg object can be used for visual implementation of this game. To do
this we have to either sort this peg object after each insertion or treat those as three
stacks object. In our algorithm we have done it as three peg objects as simple storage of
disks. Init ially all these three peg objects wil l be blank except source peg. All disks are
pil led on that disk. When all disks are on destination peg then the game is over. This may
be used as an indicator that indicates the termination of the game. But the algorithm
shown in this paper does not use this technique.

8)

24

2) Now think about disk objects. They have a property (we call it present location) which

tells the present location of lts. Initially all disk object have this property with source peg

value. They also have another property (we call it next_location) which tell the peg that is

next visited by that disk object. What will be the next_location value of each disk object

init ially ? The answer of this question is discussed in paragraph 2 & 3 of Section-ll l . After

each movement of any disk its present_location will be next_location and next_location

will be the other peg.

3) We can count each movement and select the disk which will move in that movement. But

it is an inefficient way. We can do this by introducing a new property of disk object (we

call it flag). Initially all disk objects have flag value '0'. After each movemenl of any disk

its f lag value along with all disks smaller than it wil l be increased by 1.

When there need a selection of disk one procedure just check from smaller to larger to

find out the first disk that has even number or'0' as flag value. Flag value '0' means this

disk has not start its movement yet. When flag value is even it indicates that it is ready to

move. But if there is any disk that is bigger than that disk on that peg that it resides it

can't move.The smallest disk (here the set of disks) will move in each odd number of

movement and there exist no smaller disk than it so after any movement held by the

smallest disk requires no change of f lag value. Again if 'm' is equal to 'n!then there need

no calculation. Just it gives the message of f inishing the game. Again if 'm',is equals to 1

then it is meaningless as there is no disk upon it. So 'm' will be more than l and less than
'n ' .

The algorithm has some procedures. The main procedure (name TOHQ) is given below:

TOH0
input n; input m;
check if m<2 & m>=n

then exitQ giving a message

else
initialize_pegQ // initialize three peg objects

initialize-disk0 // initialize (n-m+1) disks object
f o r i < -1 to2n 'm-1
move 1-st disk or set of disks
update_disk(set)

"00"";lifl!"0?o :
move 2-nd or mth disk l

update_disk(m)
update_peg(m)
show_peg0
move 1-st disk or set of disks

25

update-disk(set)
update-peg(set)
a e- select-disk$
if(a==NULL)

break:
else

move a
update-disk(a)
update-peg(a)

next i

show-peg0
END // end of TOWfl

To initialize the peg obiects initialize-pegfl is written. lt is given below:

initialize_peg0
pile all(n-m+1) disks on source peg

make other pegs blank

END // end of initialize-pegQ

To initialize the disk objects initialize-diskfl is written, lt is given below:

Initialize_disk0

1) Give all disks' present-location as source peg

2) Give all disks' next_location as destination peg or the other peg according to the rule

given paragraph 2 & 3 of Section-ll l .

3) Give all disks'f lag value'0'

END // end of initialize-diskQ

The algorithm show_peg is used to display the status of each peg . The algorithm is given

below:
show_pegfl
'l
)show the content of source peg in a sorting order

2)show the content of destination peg in a sorting order

3)show the content of the other peg in a sorting order

END // end of showSeg$

The algorithm of update-diskQ is given below:

update_disk(a)
1) present-location =next-location

next_location = other than disks previous value of present-location and next-location.

lf (al=set&&om) then increase flag values of all disks' object including a-th disk that is

smaller than a-th disk but larger than m-th disk by 1

END // end of update-disk0

The algorithm of updatelceg$ is given below:

26

update_peg(a)
put a disk from a.presenr_bcation peg to a.next_location peg
END //end of update_peg$

The algorithm of select_disk$ is given below:
select_disk$
Find the smallest disk object'b'from (m+1)-th to n-th which has flag value even or'0'
lf no such 'b' is presentlfiEn b NULL
Return b
END // End of select_disk$

Vl. Discussion

The main target of this paper is to introduce a new algorithm for finding out any particular
disk's movement along with the description of the three pegs after each movement. The
mathematics used to derive the algorithm is straightforward and simple. From this
mathematics it is easy to predict what will happen if one or more disk is added in or
subtracted from the set of disks (i.e (m-1)disks) or from disk below m-th disk. lt turns (m-1)
peg as one single peg. So it needs to compute less to describe each peg after each
movement of m-th disk.

References

[1]. Horowitz, Ellis and Sahni, Sartaj, Computer Algorithms, The McGraw-Hill Companies, Inc.,
New York 1992.pp.101-1 10.

[2]. Kenneth H Rosen, Discrete Mathematics and its Application, The McGrawHill Companies,
Inc., New York 1999 4-th edition.

[3]. M. Lu, "Towers of Hanoi graphs," lntemational Joumal of Computer Mathematlcs, vol. 19, no.
1, pp.23-38, 1986.

[4]. Nell Dale, Susan c. Lilly, Pascal Plus Data Structures Algorithms and Advanced
Programming, Tata McGraw-Hill companies, New Delhi 1985.

[5]. Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Introduction to Algorithm,
Prentice hall, New Delhi, 1999.

[6]. X.-M. Lu and T.-S. Dillon, "Nonrecursive solution to parallel multipeg Towers of Hanoi: a
decomposition approach," Mathematical and Computer Modelling, vol. 24, no. 3, pp. 29-35,
1 996.

[7]. X.-M. Lu and T.-S. Dillon, "Parallelism for multipeg Towers of Hanoi," Mathematical and
Computer Modelling, vol. 21, no.3, pp. 3-17, 1995.

[8]. X.-M. Lu and T.-S. Dillon, 'A note on parallelism for the Towers ol Hanoi," Mathematical and
Computer Modelling, vol. 20, no. 3, pp. 1-6, 1994.

27

[9]. X.-M. Lu and T.-S. Dil lon, " Parallel paradigms for the multipeg Towers of Hanoi." Research
Beport, November 199'1 .

[10]. X.-M. Lu, "An iterative solution for the 4-peg Towers of Hanoi," The Computer Journal, vol.
32, no.2, pp. 187-189, 1989.

[1 1]. x.-M. Lu, "Towers of Hanoi problem with arbitrary k>=3 pegs,- lnternational Journat of
Computer Mathematics, vol. 24, no. 1, pp. 39-54, 1988.

[12]. Yedidyah Langsam, M. J.Augensten, Aaron M. Tenenbaum, Data Structures Using C And
C++, Prentice hall, New Jersey 07458.

2B

