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Abstract

We present a block-based multi-channel mechanism
for image texture classification inspired by human wvi-
sual system(HVS). The proposed approach compresses
the feature space by adopting the filters within a small
sliding block of data meaningful to relatively accu-
rate boundary extraction. In our efforts, 2D Gaus-
sian functions were used as bandpass cortex filters
to simualte the behaviour of simple cells in HVS. A
square block of data was captured and cortex filters at
various directions and radial bands were applied to fil-
terout the required frequency components. The output
of the filters were used to compute average energy and
magtitude deviation as texture features in the block.
We repeated this procedure for the subsequent blocks of
data. Hence we obtained a set of feature images. The
obtained feature images were then integrated with min-
imum distance classifier for supervised and k-means
algorithm for unsupervised classification. We demon-
trated the performance of our approach by experiments
on real world scence images from camera, Brodatz’s
album and satellite sensors. Comparison with Haral-
ick’s gray-level co-occurence matriz(GLCM) and dis-
crete wavelet frame(DWF) based approaches show the
superiority of our method.

1 Introduction

Many earth observation systems provide us with
plenty of images of our planet. Together with an
increasing resolution, the amount of numerical data
drastically increases including the complexity of indi-
vidual images. Therefore, means for automatic extrac-
tion of useful information from the steadily growing
archives become necessary. Information in this kind of
images is mainly contained in the multi-variate statis-
tics of the different image channels due to the different

reflectivities in the spectral bands of electromagnetic
radiation. The use of spectral features for image clas-
sification is one of the standard techniques widely used
in remote sensing [1]. However, spectral classification
often fails with the changes in illumination conditions
or non-uniform illuminations. Furthermore, if spatial
context is needed to identify particular cover types,
such as 'urban’ or ’fields’, spectral propertics do not
provide robust representation whereas texture is an
invaluable feature to take into account. But due to
its randomness and the spatial continuity in the local
and global scale, it is quite difficult to give a universal
definition of texture. According to Sklansky (2] 27A
region in an image has a constant texture if a set of
local statistics or other properties of the picture are
constant, slowly varying or approximately periodic”.

Over the past three decades, a large number of
approaches, mainly categorized into statistical and
signal processing methods, have been developed.
Statistical methods include Gray-level co-occurence
matrix(GLCM)(3, 4, 5, 6], Markov random fields
model [7, 8], fractal geometry [9, 10, 11]. Signal
processing methods include various spatial /frequency
domain filtering mechanisms [12, 14, 15, 16, 17,
13, 18, 20, 19, 23] based on Gaussian, Laplacian,
wavelet(Gabor), and spatial moments. However, tex-
ture features still have not been established as stan-
dard tools for remote sensing image interpretation. In
this paper we, therefore, propose a block processing
concept using popular cortex transform and demon-
strated its performance in the remote sensing, normal
camera, and standard Brodatz texture images.

The contribution is structured as follows:

1. Develop a block processing system, where cortex
filters were applied within a sliding block centered
around a pixel rather than over entire image fre-
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quency plane.

2. Reduction of feature space dimensions by experi-
mental selection of the block size which automat-
ically fixes the required scales based on octave
spacing.

3. HVS based features appear suitable to the well
known classifiers like minimum distance and k-
means algorithm.

In our approach, we applied cortex filters within
a square block of data. Average energy and magni-
tude deviation computed on the filtered images are
regarded as texture features. Moving the window
throughout the entire image and calculating texture
features for each obtain a set of feature images. The
feature set is subsequently classified using above men-
tioned classifiers.

In section 2 we briefly explain cortex transform with
associated filters. Section 3 presents detail classifica-
tion system, in which we explain block-based feature
computation technique. In section 4, we present the
results and comparative study with GLCM and DWF
based approaches. Finally we discuss the work in sec-
tion 5 and conclude it through section 6.

2 Cortex Transform

The cortex transform [17] decomposes an input im-
age into a set of sub-images according to the behavior
of simple cells of HVS. The band pass nature of the
simple cells is modelled by the cortex filter, which is a
product of two gaussian functions in the frequency do-
main, namely radial band and orientation filters with
a radial and orientation bandwidth of 1 octave and 45
degrees respectively. In polar cordinate system, they
are represented as follows.

Radial band filter:
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Here Int[] is a function to compute the integer
value of the argument, r and € are the frequency vari-
ables and 7; , 7o are the filter corner frequencies re-
spectively. m,., my are means, o,., oy are standard de-
viations, and R,., Ry are ratio parameters of the Gaus-
sians respectively. 'Indices’ are integer values (0,1,2,3)
used to obtain center frequencies of the orientation fil-
ters. The frequency spectrum of a sample radial band
, orientation, and cortex filter are shown in Fig.1. The
detail computation of the various filter parameters will
be found in [17] [21].

(d)

Figure 1: The frequency spectrum of a sample (a)
Radial band filter, (b) Orientation filter, (c) Cortex
filter, and (d) Indices for orientation filters

3 Classification system

A detail classification system counsists of the follow-
ing sub-sections.
3.1 Filter kernel generation

Filter kernel in the frequency domain, as shown in
table 1, is generated using Eq. (1)-(9). The various
steps are summarized as follows:



1. Sclect the size of the kernel equal to sliding win-
dow size i.e, 16x16 in our case.

2. Choose an initial radial frequency, fi,; (2 in our
case) and determine number of frequency fairs
within the window following octave rule. For each
pair compute also the means and standard devi-
ations using Eq. (4)-(9) for a chosen value of R,
or Ry between 0.01 to 0.03.

3. Calculate frequency variables » and 6 and also
compute f(r) and g(#) for r; <r <r; and 6, <
6 < 6, , where i, j indicate the lower and upper
radial frequency indices and m, n are orientation
indices respectively.

4. Compute cortex filter as C(r, ) = f(r)g(6).

Table 1: Filter Kernel for a sample (8x8) window,
where R, or Rg is90.01, 11 = fie = 2,75 — 4, and
6, =06, = T.
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3.2 Window selection

In our analysis, window size is very important as
it determines the feature space dimension and scales.
For the segmentation study, the window size should
include pixels from a single texture class and usually
the smaller the size, the better is the performance. On
the other hand, a reasonably larger size is expected
for better texture characterization. As our present ef-
forts, the window size is determined as 16x16 based on
a boundary verification experiment over a number of
images. The principle is to compromise between the
stability and resolution. Figure 2 shows how various
window sizes affect the class boundaries. However au-
tomatic selection of window size is an important issue
yet to be solved.
3.3 Filter selection criterion

In our implementation, octave scale is used dur-
ing filter selection within the image block mentioned
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Figure 2: Effect of window sizes on class boundary, (a)
Original flower-1 image (256x256). (b). (c), and (d)
Classified images by our BPA approach for window
sizes (8x8), (16x16), and (32x32).

Table 2: Orientation filters per radial band.

Range
Ry, < r < Ry,where
Ry =2,4and R =4,8
cycles per pixel

Angle
02 =0 <5
45° < 0 < 90°
907™= g <7135°
1352 <6 < 180°

above. This is justified by the radial frequency band-
width of the simple cells in the visual cortex of HVS.
According to this scale, number of cortex filters re-
quired is

NCF = 41og,[(N/2)/ fint] (10)

where N represents a square block size and f;,; is
the initial radial frequency. For a square window of
size (16x16), the total number of filters can be calcu-
lated from table 2.

If we choose an initial radius of 2 units, the num-
ber of cortex filter are 8. Again to cover the central
(low frequency) and outermost regions of the block
two Gaussian isotropic filters are used. Implementa-
tion shows that these two filters help to extract rel-
atively coarser and finer textural regions. So the to-
tal number of filters becomes (NCF+2) i.e., 10 in our
example. Observed that the logarithmic term in the



above equation represents number of scales, which is
three (3) for our (16x16) block with unit lowest radial
frequency.
3.4 Feature image formation

Feature images are computed based on the average
energy and magnitude deviation of the filtered images
computed over a square block with center (x,, y,.
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.where N? represents number of pixels within a win-
dow and Fyj(2,y) is the filtered image, and pyp,,) its
mean magnitude in the i-th scale and j-th orientation.
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Figure 3: Flow diagram for feature image formation

A square block of data is windowed from the origi-
nal image and is transformed by using popular Fourier
transformation technique. Various frequency compo-
nents characterizing radial and orientation properties
of texture in the block are filtered out in the frequency
domain by using cortex filters. Then average energy
and magnitude deviation corresponding to each fil-
tered magnitude response are calculated as texture
features. Thus the feature values obtained from the
various filters are stored as the first pixel value of a
set of 2D arrays. Now next block of data is selected
through appropriate horizontal shifting of the window.
Hence the calculated feature values are stored as the
second pixel of the previous set of arrays. In this way,
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through horizontal and vertical shifting of the window
over the original image and putting the calculated fea-
tures as various pixels of the arrays. a set of feature
images arc generated. Figure 3 shows the block dia-
gram of the technique described.

3.5 Feature image integration
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Figure 4: Supervised and unsupervised classification

In the supervised classification, visual samples are
used for representative class vectors formation. In fact
manual identification of the true classes is essential
in supervised method. However, the same technique
as the texture feature computation is adopted in the
training phase for training vectors formation. Some
samples (maximum 3) from each expected class of the
input image are visually selected as true samples. We
then computed and averaged out sample-training vee-
tors in each class to obtain individual class represen-
tative vector. Feature images and the representative
vectors calculated above are inputted to the minimum
distance classifier. Classifier computes all cuclidean
distances between an unknown vector to the all known
training vectors. We then label the concerned pixel
based on the minimum distance calculated from the
above distances. The same procedure is exercised un-
til the labeling of entire image pixels is completed.
This is how we obtain the classified image.

K-means algorithm is used for unsupervised classi-
fication. Instead of visual samples, the user just pro-
vides two inputs to the classifier. 1) Number of major
classes k, in the input image, 2) A set of feature im-
ages previously generated. The classifier iteratively
modifies the randomly selected mean vectors until an
error criterion is satisfied. Of course the population
in cach class grows based on the cuclidean distances



between unknown vector to randomly selected mean
veetors. Figure 4 shows a simple block diagram of our
classification method.

4 Results and comparative study
4.1 Results

Our algorithm is tested over a group of 20 images
from camera. satellite sensors and Brodatz’s album
and appears to be promising with respect to classifi-
cation accuracy (see section 4.2). Our block process-
ing operation has also flexibility in computational time
depending on the extent (number of pixels) through
which the sliding window is shifted. Approximately
10 minutes for 1 pixel. 2.5 minutes for 2 pixels, 0.625
minutes for 4 pixels shifting for an image of size 256
x 256 using Pentium (P-III, 800 MHz, 128MB RAM)
machine in the LINUX environment. However, sin-
gle pixel shifting produces best boundary, whereas
blocking effects come into picture gradually for multi-
pixels shifting. Circular window may be used to re-
duce blocking effect with the gain of computational
efficiency. Figures 5 and 6 show a set of original and
classified images obtained from supervised and unsu-
pervised methods through 1 pixel shifting of the block.
The original images have the following description.

1. Valley water image (256x256), Camera image,

2. Oily water (256x256), RADARSAT image,

3. Osaka-jetty arca (256x256). LANDSAT image,
4. Shanghai river (256x256), LANDSAT image,

5. Fired mountain (256x256), SPOT AVHRR image,
6. Mosaic-1(128X128), Brodatz’s album,

7. Mosaic-2 (256x256), Brodatz’s album,

8. Mosaic-3(256X256). Brodatz’s album,

9. Scene image (256x256), Camera image,
10. Flower-2 image (256x256), Camera image.

From the valley water image, it is observed that
our algorithm can distinguish between land and wa-
ter very clearly. Satellite images (oily water, Osaka-
jetty, shanghai river, fired mountain) are also classi-
fied into constituent classes very well. It is worthy to
mention that our approach can distinguish between
severely oily water from less oily or non-oily part of
the oily water image. In the Osaka-jetty image, we
observe that BPA approach distinguishes the jetty-
working area from water and other part of the soil.
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Figure 5: (a) Original image, Classified images
(b)supervised, (c) unsupervised

Furthermore it can isolate fire area from the normal
ground in case fired mountain image. However, smoke
region of this image is mis-classified as fire. In shang-
hai river image, we see the newly cultivated area (grey
or dark region in the central part of the image) is sep-
arated from the rest of the soil and river. Standard
texture (mosaic) images are also well classified except
a minor boundary problem.

4.2 Comparative study

We have performed comparative study in two as-
pects.

In the first case, a visual comparison between super-
vised and unsupervised classification results is shown
in Figs. 5, 6 based on our BPA features. Results
show a very competitive outcome without remarkable
distinction of overall performance between the two.

In the second case, visual as well as confusion
matrix analysis is performed between our BPA with
GLCM and DWF based approachs for supervised clas-
sification. Figure 7 shows that our BPA approach per-
forms well in terms of classification accuracy and noise
suppresion in all types images. Specially the natu-



(c)

Figure 6: (a) Original image, Classified im-
ages(b)supervised, (c) unsupervised

ral (flowers, valley water, and scene) images are well
classified with respect to accuracy and boundary ex-
traction. Our BPA clearly extracts the cloud regions
from the scene image, where both the GLCM and
DWF based approaches fail. However, DWF based
approach performs better in case of mosaic textures
both in terms of noise suppression and boundary ex-
traction. While GLCM approach produces smoother
boundary at the cost noises.

4.2.1 Gray-level co-occurence matrix ap-
proach

Gray-level co-occurrence matrix is a two dimensional
matrix of joint probabilities Py ,.(i,j) between pairs
of pixels, separated by a distance, d, in a given di-
rection, r. It is popular in texture description and is
based on the repeated occurrences of some gray level
configuration in the texture. This configuration varies
rapidly with distance in fine textures, slowly in coarse
textures [3]. Finding texture features from gray-level
co-occurrence matrix for texture analysis in this exper-

Table 3: Confusion matrix for the classified oily-water

image obtained from BPA.

Cl | C2| C3| C4 | Total | ICA%)
C1 512 0 0 0 512 100.0
Cc2 0 512 0 0 512 100.0
c3 0 08 4512320 512 100.0
C4 0 0 0 512 512 100.0

Total ["512% "5 12%[*5128 512

Overall accuracy(OA) is 100.0%

iment are based on the following well known features:

Energy = > Y Pi(i.j) (13)
Bid - g

Entropy = = > Pu.(i.j)log(Pu.(i. )
5 S

(14)

Contrast = Z Z(L — )2Py.(i,7) (15)
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We used co-occurrence lengths of 1 and /2 pixels
to calculate above features. A linear gray-scale quan-
tization to 40 levels is also performed to limit the size
of the co-occurrence matrix and to save computational
time.

Table 4: Confusion matrix for the classified oily-water

image obtained from GLCM approach.

Cl | C2| C3| C4d | Total | ICA(%)
C1 9911165 [ 4] TI5356% " <512 19.34
G2 [242 | 88 s S182 21 519 17.19
C3 62 0 | 450 | 0O 512 87.89
C4 0 0 0 512 512 100.0

Total | 512 512055198512

Overall accuracy(OA) is 56.10 %

Table 5: Confusion matrix for the classified oily-water
image obtained from DWF based approach.
Cl|[C2|C3| C4 | Total | ICA(%)
C1 150 | 240 | 103 | 19 512 29.30
C2 05 [F388¥ |01\ 21045 ] 512 75.78
C3 0 0 512 0 512 100
C4 0 76 D=34365 | 512 85.16
Total 55127~ 5105 5191 512
Overall accuracy(OA) is 72.56 %
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4.2.2 Wavelet Frame Decomposition(WFD)
based Method

Discrete wavelet transform is an elegant tool for multi-
resolution texture analysis. However down-sampling
during decomposition does not properly characterize
the shift invariance properties of texture. Therefore
discrete wavelet frame(DWF)([24] may be used. We
used 1D Dubechies-4 wavelet filter [25] to decompose
the signal without downsampling. So the sub-bands
have the same size as the original image. Four lev-
cls of decomposition for 256x256 images is used in our
studics. The average energy of the high frequency sub-
bands are computed at every pixel over a sliding win-
dow. These sub-band energy is regarded as texture
features. We used a square window of size 13x13 for
the above implementation.

1 NN
Ey(wo.y0) = 5z D_>_IWalww)l  (17)

z=1y=1

Here N is the window size with center (z¢,yo), s indi-
cates the number of decomposition scales and W(z, y)
is the pixel transform coefficient value. Thus a set of
energy images arc constructed corresponding to sub-
band images. These are directly applied to minimum
distance classifier for supervised texture classification.

4.2.3 Confusion matrix analysis

Confusion matrix analysis is performed on the classi-
fied images obtained from supervised method. As the
true boundaries of expected texture classes are un-
known, we did not use the entire classified image for
the above analysis. Instead, we used some carefully
selected samples (by the expert user) for the error
matrix formation. The labels of the user fixed pix-
els compared with the same positioned classifier es-
timated pixel labels to construct confusion matrices,
whose diagonal entries reflect the accuracy of classifi-
cation. We then compute individual (ICA) and overall
classification accuracy (OA) using Eq. 18 and Eq.19.

Cu
eA = —= (18)
Zj:lcij
1 Cii
OA = _.Ez_=1___ (19)

1 1O

where Cy;'s (i = j) are entries for correct classifica-
tion and Cj; 's (i # j) are misclassified pixels in the
window being considered. Tables 3, 4, and 5 show the
error matrices computed from the classified oily wa-
ter images, obtain from our BPA, GLCM, and DWF
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based approaches. The diagonal entries of the matri-
ces indicate the strength of our BPA.

In order to demonstrate the performance of our ap-
proach, we computed overall classification accuracy
(OA) over seven images from different categories ( nat-
ural, mosaic, remotely sensed). Results indicate the
superiority of our approach consistently with a gain
of average overall accuracy of 24.26 % and 20.66%
compared to GLCM and DWF based approaches re-
spectively. Figure 7 7 and Table 6 confirm our claiins
subjectively and objectively.

Figure 7: Classified images(a) Our BPA (b)GLCM
approach, and (¢) DWF based method



Table 6: Comparison of overall class accuracy between
BPA and GLCM approach.

Images Number | (Supervised) overall
of sample || accuracy,0A (%

pixels BPA | GLCM | DWF
Natural Scene 3840 92:03% -65.70° | 7851
Mosaic-1 12288 99.51 | 96.34 | 99.21
Mosaic-2 2048 92.85°1 90.43 99.74
Oily water 2048 100.0 | 56.10 72.56
Shanghai river 2304 95571~ 85.37 70.49
valley water 1536 100.0 | 80.534 | 40.43
Flower2 1536 100.0 | 76.758 | 74.15

Average OA (%) A: B: &
97:58 |73.32 76.92
Accuracy(OA) gain(%) A-B=24.26, A-C=20.66

5 Discussion

In our implementation, we select a window size as
16x16 based on the experiment to compromise be-
tween resolution and stability. However, the algorithm
may be modified for automatic window size selection
based on image frequency analysis. Autocorrelation
width may be used to determine the size (lowest and
highest) of the texture primitive, that is to obtain the
window size especially for regular textured images.
During filter kernel generation, initial radial frequency
was chosen to be 2 or 4 units away from the lowest fre-
quency content. Filter pass band controlling parame-
ter ratio, R,.orRy is observed to be suitable between
0.01-0.03 for various types of images. Phase informa-
tion of images is also important factor to consider as
it can contribute to the texture analysis [22]. Again
we did not use the overlapping of filter kernels within
a data block. However, appropriate overlapping can
produce more uniform coverage of the frequency plane.
Although in gencral most of the signal energy is con-
centrated in the lower frequency ranges, our block
based approach discards high frequency information
to an extent. Appropriate block size might encompass
sufficient filters necessay to extract required frequency
information.

6 Conclusion

A novel block processing approach for dealing with
the image texture is proposed here for classification of
images. Our algorithm reduces feature space through
applying filters within small blocks fixed experimen-
tally. This is why we did not use optimal filter selec-
tion scheme. We also relaxed applying post-filtering
transformation as our block based features appear to
be suitable for texture characterization.
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Comparison with the GLCM and DWF based methods
show the superiority of our approach in terns of classi-
fication accuracy over various types of images specially
natural images as mentioned. It is observed that both
GLCM and DWF based methods failed to classify nat-
ural images despite their better performances in terms
of boundary extraction of mosaic textures.
Moreover, our block processing approach provides
noise smoothing automatically. However. phase infor-
mation and non-uniform illuminations were not con-
sidered in our study. So automatic window size se-
lection, inclusion of phase information, and analysis
in the noisy and varying illuminating environment are
open for future study.
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