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A NOVEL APPROACH TO NOISY SPEECH RECOGNITION USING DTW
ALGORITHM WITH MEL.FREQUENCY CEPSTRAL COEFFICIENTS

Rishad Ahmed Shafik* FazliQayyum Yousaf-Zai*

ABSTRACT

A new and effective approach to recognition of noisy speech is introduced. End-
Point-Detection algorithm is used to measure the noise power and to automatically
initiate recording of a spoken word. Unvoiced components of the recorded speec
h, buried in noise, viz. ambient noise or hiss noise or telephone noise, were then
optimally minimized by Yulewalk Finite lmpulse Response (FIR) band pass Filter.
The speech signal was then sampled and speech features were extracted using
Mel-Frequency Cepstrat Cbefficients (MFCC), which were later dynamically time-
warped to find the average minimal distance lrom Euclidean distance matrices to
help facilitate the recognition of speech. For generalization, speech data from three
speakers, of three different level of pitch, were collected and were compared to a
mid-pitch speaker. This work will be extended to establish both speaker
independent and speaker dependent efficacy and accuracy in future. Such a
speech recognition system can be both fast and effective even in moderately
hostile environments.

Keywords: End-Point-Detection algorithm (EPD), Yulewalk Finite Impulse Response
(FIR) Filter, Mel-Frequency Cepstral Coefficients (MFCC), Dyanamic Time Warping
(Drw).

1. INTRODUCTION

The history of speech recognition dates back to the 1870s. Extensive research has been
carried out to establish speech recognition system to work in varying conditions. , , ,
Bendelac and Shallom[2] compared recognition rates for noiseless and simulated cellular
car noise conditions using Dynamic Time Warping (DTW) technique, and reported
accuracies above 95%. Awad et al[3] reported greater than 95% accuracy using an
isolated 2Z-word vocabulary trained to a single speaker. Davis and Mermelstein[4]
compared Cepstral and Linear Predictive Coding (LPC) distance measures using DTW
methods for both the speaker dependent case as well as the independent cases on a
vocabulary of 52 monosyllabic words from two different speakers, with 85% to as high as
98% accuracy. Rabiner et al[S] repofted 5% to 35% error probabilities using DTW with
LPC distance metric for 100 different speakers and isolated 1O-word vocabulary. Sakoe
and Chiba discussed various DTW local and global constraint options and reported error
rates of less than 1"/o tor their speaker dependent tests. Gray and Markel examined a
number of distance measures, which are applicable to the isolated word recognition
problem and reported that the Root Mean Square (RMS) logarithmic spectral distance
measure using Cepstral coefficients performed the best. Kuitert and Boves[12Errorl
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Bookmark not defined.l demonstrated speech recognition for Global System for Mobile
(GSM) coded speech with hardware filter solutions. In the following sections, the
recognition of speech buried in three different experimental noises will be investigated,
viz. ambient noise, hiss noise and telephone noise. For this work, a 7-word vocabulary
would be assumed as-'STOP', 'FRONT', 'BACK', 'RIGHT', 'LEFT', 'FAST'and'SLOW'.

Finally, the results of average minimum distance calculation will be presented after
applying DTW algorithm on MFCCS.

The speech recognition process that has been implemented can be best described by the
following flow chart in figure-1. The main processes, viz. End Point Detection (EPD),
Noise Filtering, vocabulary formation using MFCC and DTW will be illustrated in the
following sections.
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Figure 1: Flow Diagram of Optimal Speech Recognition

2. END POINT DETECTION AND RECORDING

lnstead of manual parsing of recording of a speech, as was done in [5] and [6], the
recording would be started after a continuous monitoring of average noise level by EPD
algorithm. Several noises were simulated and examined to find the average minimum
distance results, viz. ambient room noise, hiss noise, and telephone noise. A typical hiss
noise for Signal{o-Noise Ratio (SNR) of 30dB had been simulated and used. Telephone
line noise comes in many forms, such as, electrical interference from fluorescent fixtures,
high frequency from the many amplifier stages in the yoice path and sometimes from
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cross talking. lt usually ranges up to SNR of 45d8. End Point Detection (EpD) algorithm
was used to calculate noise energy for frames up to 256 samples with frame overlap of
86 samples. Thus, for a frame i, the noise energy was found out usingg

p?t :>( t " ; )  (1)

wherek=1 , . . .  . ,m
Where s[k] is the speech data in each frame with j samples. Similarly, p[i] is calculated for
all the frames over one second and an expectation for the final noise value. Enoise is
found out as-

Enoi," =E{ptil')} e)
Where x operator stands for expectation over the total number of frames, p[i] is the noise
power for frame i. Thus, when an utterance is heard, the recording is initiated only when
the average energy level, Eavg, is higher than average noise level Enoise. Recorded
ambient room noise, simulated hiss noise of SNR 30dB and recorded telephone noise of
SNR 45dB measured at the same time interval is shown in figure-2. The energy profile of
signal corresponding to the utterance, 'STOP'for each frame, showing where the average
noise level is crossed, is illustrated in figure-3.
After the end point was detected, the program recorded the speech signal input for about
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Figure 2: Noise Plot of Ambient Noise (Left), Hiss Noise (centre), Telephone Noise (Right)
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Figure 3: Average Energy Level (dB) and First End from EPD for Ambient Noise (Left), Hiss
Noise (Centre) and Telephone Noise (Right)

Journal of Engineerin.4 andTechnology Vol. 3 No. 2, 2004 
Zg

.t0

r 'lo
!

t 'so
t

t "r0
Il

.10

3
I
3

I
I
a

' l l

r 'lt
!

I .to
I
D

t . i l
U

8l0P h llir Xcir

l0 10
Frfi||

, 163 Ambient tkrise Hbs l'loise

8l0l h lrl llohr

lniltl



10OO milliseconds in 8-bit format and sampled at a rate of 11025 Hz. This method of
speech detection showed good synchronization of speech with the reference vocabulary
as compared to manual parsing as in [5] and [6].
3. NOISE FILTER

Yulewalk FIR band pass filters effectively reduce noise from signal buried in band-limited
noise that may change slightly over time. The different noise assumed in this work can
thus be effectively removed using Yulewalk FIR band pass filter. Since the desired signal
would be voiced speech signal and the unvoiced noise components with minimum noise,
it was eltracted after filtering through a pass band of human voice frequency range of
.03kHz to 3.4kHz. This reduces any high frequency noise present in the signal. However,
this did not reduce the in-band telephone cross talking noise but worked satisfactorily with
hiss noise. The polynomial form of transfer function for a Yulewalk FlFl filter is given by-

B (z )u(z)=ff i  (3)

The coefficients of numerator B(z) and denominator A(z) of the 16th order filter are shown
below with decreasing powers of polynomials -

B(z) 0.6379 1.0634 -2.9958 -5.9776 5.5451 14.8341 -4.2175 -21.0237 -0.9835

18.3406 4.6417 -9.8326 -3.9104 2.9961 1.5217 -0.4001 -0.2389

A(z) 1.0000 1.0032 -4.7184 -5.6645 9.5081 14.0097 -9.9924 -19.6912 4.8594

16.9896 0.4529 -8.9932 -'1.8573 2.7029 0.9035 -0.3556 -0.1529

Major problems were faced with speech immersed in hiss noise. Unfiltered speech signal
for'STOP'buried in hiss noise and the filtered speech with 16th order Yulwalk FIR filter
are shown in figure-4.

The reference vocabulary was constructed using the filtered speech from hiss noise in

Samples Samples

Figure 4: Unfiltered word'STOP'(Left) and fi l tered word 'STOP'using 16th order Yulewalk FIR
filter (Right)
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order to have the minimum distance output in noisy conditions.

4. SPEECH RECOGNITION

ALGORITHM

Mel-Frequency Cepstral Coefficients: After the speech were recorded and noise reduction
technique was applied, both the reference speech data and test speech data were divided
in 23.2 milliseconds (n=256-point) frames, which were stepped by 11.6 milliseconds
(m=128 points) between processing frames. A total of 10 overlapped 200-Hz triangle
filters were spaced evenly between 0 and 1 kHz followed by 10logarithmically increasing
bandwidth filters spaced logarithmically from 1 kHz to the Nyquist frequency. The log-
energy outputs Xk from the Mel{requency filters were used along with the following
equation to calculate the Mel-frequency Cepstral Coefficients[6]

MFCC, :  $  
" .  

. , , ' (n i&  
-o 'S t  

)  r :  t .2 . . . . . .p' f r ' ( 2 o )

Where,20 is the numberof Mel{requencyfilters and P='10 is the order. The coefficients
for each reference word were saved in a Pxm matrix to form vocabulary. Later, with the
reference vocabulary and test word, the distance metric was formed by using a Euclidean
distance for the Cepstral coefficients over all frames after dynamic time warping was
applied to align the frames optimally. All paths were given a transition cost of 1 initially.
The distance metric, Di,j, between frame i of the test word T and frame j of the reference
word R was calculated as follows.[7]

, ,  , : ( rL

Where CCT|,k is the ith row kth column of the Test Word MFCC and CCRj,k is the jth row
kth column of the Reference Word MFCC and P is the number of rows for MFCC matrix
(same as the order of MFCC filters).

Dynamic Time Warping Algorithm: Due to the wide variations in speech among
speakers and among different instances, it is necessary to apply some kind of non-linear
time warping prior to the direct comparison of two speech instances. Dynamic Time
Warping, (DTW) is the preferred method for doing this. The principles of dynamic
programming can be applied to optimally align and synchronize the speech signals.[6]
The application of DTW in isolated word recognition is done by aligning the processing
frames of a reference word along the abscissa and a test word along the ordinate of a
Caftesian 2-D coordinate system as shown in figure-S. The distance metric is then
computed between the test and reference frames, while progressing from the origin at the
left bottom corner up and to the rioht.

The principles of dynamic programming can be applied to find the path, which has the
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Figure 5: Dynamic Time Warping

minimum accumulated distance metric. After performing this test, using all of the
reference vocabulary words for each test word, the reference word with the minimum
accumulated distance metric is deemed to be a match. For a speech signal, there are a
number of constraints on the search path, which can be applied to help decrease the
complexity of the search. The primary constraint is that the search should be monotonic.
This can be forced by the application of global and local constraints.[9] Global constraints
are simply overall constraints on the valid overall search path. Boundaries are placed by
a maximum and minimum slope (Smax , Smin) as well as by allowing the search to begin
and/or end within a given frame tolerance (Eps) of the initial and final frames. Local
constraints determine the valid search path on a local basis. Sakoe and Chiba[6]
presented a number of variations of local constraints. For this work, the only locally
imposed constraint was monotonic. This local constraint simply requires that the only valid
paths to a given point must pass through a point from the left and/or below. Global and
local constraints used in DTW algorithm are shown in figure-6. The average minimum
distances found for all the points for coefficient matrices are then averaged for each
sample.

I l+.p. Rcfdacc WordF@e i I

Figure 6: GlobalConstraints of DTW(left) and Local Constraints on DTW (right)
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5. RESULTS

The present speech recognition system was tested with three different speakers A, B, and
C with a reference vocabulary set using speech signals from speaker A, chosen with
medium pitch. Speaker B and C are chosen with high and low pitch respectively. The
reference vocabulary was set up using filtered speech from ambient noise and the
distances shown in the result tables show average minimum distances for speech words
immersed in three noises discussed before. Results were observed for maximum and
minimum slope of Smax=3.O and Smin=O.S and frame tolerance of Eps=3 with order of
P=10. The minimum values (shown bold in the resulUtables 1,2 and 3 in Appendix A) of
the average minimum accumulated distances set, generated from comparison of the
coefficients of test word with that of seven reference words using DTW algorithm, was
always picked up as the spoken word. However, since hiss noise consists of critical pass-
band noise, the performances were worse than the other two cases. Accuracies were
measured using average correct recognitions out of total attempts and variances were
minimized for values of Smax and Smin and Eps. Thus, as good as 100% test accuracy
was obtained for speaker dependent tests for speech words immersed in ambient noise
and telephone noise but for that in hiss noise, the test accuracy was measured to be
71.43%. In speaker independent tests, high pitched speaker B showed test accuracy of
42.86"/" in hiss noise and 85.71% accuracy was observed in both ambient noise and
telephone noise. Low pitched speaker C showed test accuracy of 71.43'h in hiss noise
and 85.71"/" accuracy in ambient noise and 100% accuracy in telephone noise was
observed. lt was also seen previously that for pedect matching of two distances matrices,
the minimum distance would be 1.000, which was set to be the initial path weight. Due to
the bulk of filtration and monotonic DTW algorithm, the time required for each speech
recording to recognition was estimated to be about 7.83 seconds on an average with an
833MHz microprocessor, which is quite acceptable and fast with efficacy concerned.
Speaker A showed the best results for its pitch and feature similarity. The minimum
distances results varied slightly for different speakers in speaker independent tests for
dissimilarities of pitch and length of speech. As seen from the tabular set of data, most of
the inaccuracies took place in the case of either'FAST' or'SLOW', because of speech
similarities with 'FRONT' and 'STOP'. But this can be made up with introduction of
automatic learning system using database approach.

6. CONCLUSION
In this work, detailed results have been found for speech recognition of a 7-word
vocabulary, with sample speeches taken in three different noisy environments. lt has been
found that, for ambient noise the recognition accuracy is better than for telephone noise
and hiss noise. Telephone noise can be random and performances may vary for different
instances. Hiss noise carries pass-band spectrum in human voice frequency range and
as such, to improve performance of speech in such noise, adaptive noise cancellation
technique can be used and is being considered for work for future. Research will also be
carried out in future on the optimization of speech recognition impaired by Additive White
Gaussian Noise (AWGN) and power noise signals. Such recognition systems will be
greatly useful in space and military applications.
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APPENDIX A: Test Results
Table l: Average Minimum Distance, D^in, for Speaker A for dffirent notses [Speaker Dependent Test]:

S'

\)
o

o-

o

i\)

N

Test-) .STOP' .FRONT' .BACK' .RIGHT' .LEFT' .FAST' 'sLow'

Ref.J Amb Hiss Tel. Amb Hiss Tel. Amb Hiss Tel. Amb Hiss Tel. Amb Hiss Tel. Amb Hiss Tel. Amb Hiss Tel.

.STOP' 2.42692.6897 4.2365 2.8239 3.238'l2.86383.21343.32223.0933 3.54433.246( 3. I 84t 3.2995 3.47433.19833.10593.3067r. I 877 2.68s42.9674 2.4451

.FRONT' 2.72r43.2682 2.8044 2.3446 3.08872.2986 3.00463.47812.99t4 2;17233.273t2.6822 2.9440 3.71682.89142.8497 3.4938 ,..7593 2.94163.4371 l .  t ) v

.BACK' 3.01253.79693.0480 2.9487 3.51542.87 t6 2.3t17 2.8498 2.2s242 . I ) - t O 3.562t2.9t41 2.7t55 3.44652.7t49 2.76813.4665 ,..8249 3.0'78 3.772s3.1 86

.RIGHT' 3.15-3-53.70161.8250 2.6504 3.t463 2.5050 2.7w6_1. Z)Jb 2.6353 2.3901 2.92412.2798 2.8970 3 .41 l52.7868 2.653s3.39152.9086 3.30133.6666 3 .  t 2 l  I

.LEFT' 3.07593.2923 2.8291 3.0946 3.13972.78222.68021.08882.68202.7957 3.016(2.5876 2.4rs22.82422.3757 2.81 r I 3.26482.5-54,0 3.1244 3.3439 3.081 l

.FAST' 3.07263.15062.6744 2.6'1282.8976 2.6365 \.8493 3.23052;76692.81552.946',2.6773 2.74t5 3.t542 2.7046 2.2329 2.708623659 3.2266 3.16353.n2 :

sl-ow' 2.5248 3.10542.5lL9 2.91723.53312.9700 |.35753 .55133.31383.6990 3.593t3.3549 3.32403.6405 3.27823.27 t8 3.69073.4702 2.5361 3.1 2 10 2.2441

Table 2: Ave e Minimum Distance, D-in. .for Speaker B for dffirent noises [Speaker Independent Test]

festJ .STOP' .FRONT' .BACK' .RIGFTT' .LEFT' .FAST' 'sLow'

(er.{ Amb Hiss Tel. Amb Hiss Tel. Amb Hiss Tel. Amb Hiss Tel. Amb Hiss Tel. Amb Hiss Tel. Amb Hiss Tel
.STOP' 2.6838 3.1978t.4323 3. r 109 3.24142.9232 1.1635J ,ZZZ-1 3.2s573.45353.503:3.1350 3.3074 3.3543 3.10753.,14083.4615J. JZO-r 2.85r93.0816 2.599.
.FRONT' 3.0509-1_-tol  / .66/.8 2.7103 3.20162.4929 >-.94443.449't 2.8924 2.9584 3.38252.6W 3 . 1 5 r  l 3.4887 2.8554 3.01303.325 | 2.80833.0004 3.3670 2.902i
.BACK' 3 .18013.6793 .066'1 3.2979 3.70332.7996 1.74382.980s2.4686 3.0274 3.59622.720/ 3.08 l8 3.57371.51403.0085 3.46t13.0798 3.3482 J.bob) 3.3253
.RIGHT' 3. I 656 3.4866 .1663 2.9537 3.38992.8t71 >_.894C3.27742.7474 2.7655 3.2-s832.3847 2.83653.28742.6664 2.8462 3. I 56( 2.7682 3.3747 3.4780 3.3893
.LEFT' 3.289.s3.3603 .1654 3.28893.38 l5 3.0562 \.02"t:3.t259 2.8499 3.m323.35932.9394 2.5774 2,9095 2.54353.0t74 3.233(3.091I 3.46743.4727 3.532(
.FAST' 3.  l  539 3.1011 .0105 3.06833.(D35 2.8798 3.03493.3n2 2.8147 2.9835 3.10142.7732 2.861 8 2.9840 2.86822.6637 2.774r,,.4438 3.381 2 3.2701 3.2t44
'sLow' 3.00183.598 r t .6818 3.3488 3.580( 2.903'13.32t2 3.4645 3.37753 .71313.740 3.2832 3.51883 .51363.06153.56821.71833.4156 2.8797 3.316r2.534

ru

Table 3: Average Minimum Distance, Drniry for Speaker C for dffirent noises [Speaker Independent Test]

Iest-) .STOP' .FRONT' .BACK' .RIGHT' .LEFf' .FAST' .SLOW'

Ref.J Amb Hiss Tel. Amb Hiss Tel. Amb Hiss Tel. Amb Hiss Tel Amb Hiss Tel. Amb Hiss Tel. Amb Hiss Tel.
.STOP' 2.72903.0478 4.6182 3.12763.r0682.8 198 t_-J)) t 3.4041 3.30973.462'13.-36193.3593 3.48283.44743.45633.4829 3.5733|. I 083 2.94413.0579 2.6041
'FRONT' 2.90313.4224 t.906r 2.5t24 3.23792.27623.20383.5905 3. l 664 2.8747 3.334(2.6384 3.3062 3.49603.0965 3.327s3.78643.0834 3.t466 3.4048 2.98C5

BACK' 3.06013.6361r.0216 3.38883.7 tzl 2.9833 2.6&2 3.27042.4/,36 3.0608 J .O I  J -1 2.7477 3.10983.62t1 1.79883. I 695 3.7508,..6799 3.6703 4.0449 3.1863

RIGHT' 3 .1  1303.57433.0'1t7 2.7272- 1 .  I  J - 1 2 2.6t53 2.95t( 3.4696 3 . t 0 1 32.5276 3.07822.W9 2.9901 3.46 r 5 1.80463.45'183.9530t.77t5 3.9207 4.t627 3 .2181

LEFT' 3.05643.3393|.0026 3.4599 3.51032.85363.10403.3 109 2.6926 3. I 564 3.261("2.8129 2.6103 3.315t t.3689 3.14733.3708 .6227 3.4452 3.6576 3.2066
,FAST' 3.t047 3.0775 \.0237 3.007.53.08652.6847 3.09933.2074 2.9877 2.8146 3.02t32.7481 3.t342 3.203 | t.6935 3.t937 33479 t.4356 3.22413.8483 3 .171 (

sl-ow' 3.04463.40852.83'12 3. t  199 3.4621 3.0480 3.42313.63 r9 3.4767 3.5778 3.620't3.3594 3.6203 3.6884 t.4377 3.6248 3.847'7t.3622 2.7953 3.0125 2,554


