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ABSTRACT
A column having variable cross-sections with ftxed-hinged end conditions has
been modelled assuming that the column material has non-symmetric
responses in tension and compression. Recently, a powerful numerical scheme,
based on jinite difference technique, has been devised by the authors. This
method is used to trace the load-deflection curves (equilibrium configuration
paths) of the colutnn that has highly non-linear stress-strain curyes which are
non-symmetric as well in tension and compression. The critical load is
determined from the load-deflection curye using theorems of Thompson and
Hunt. To utilize the fruitfulness of the devised method, saperelastic shape
memory alloy (SMA) is used as column muterials. Experimentally obtained
stress-strain curve of SMA, which is non-symmetric in tension and
compression and highly nonlinear, used for determining the buckling
response. To make the study more realistic initial shape imperfection has also
been included and its effect on column's response has also been discussed in
detail.
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1 INTRODUCTION
The present study relies on the self-developed complete computer code

which is simple, straightforward and efficient. Such a study will be practically
important because tension-compression asymmetry as well as material
nonlinearity becomes prominent for large nonlinearly elastic buckling of any
short column having varying cross-sections, used in numerous structural
applications. It is seen from..Fig.l, that the tension-compression asymmetry
becomes prominent if thestrain exceeds IYo for the case of SMA

Buckling analysis of structures inherently involves geometric nonlinearity. It
in turn makes it an interesting topic as nonlinear problems usually do not have
any closed form solutions. Therefore, if the material nonlinearity (together with
non-syrnmetric responses in tension and compression) is added to the buckling
analysis, it then becomes much challenging. Moreover, modern engineering
structures are optimally shaped and inherently warrant instability analysis. The
present study incorporates all of such points (that is both geometrical and
material nonlinearities) and additionally includes varying cross-section of a
column. Finally, shape imperfection of the column has also been modelled to
make it a very interesting and useful one as far as applications of columns are
concerned in adaptive structures.

Euler formula is used to predict critical load of ideal columns having linearly
elastic materials; such columns are termed as slender. But, if the critical sffesses
exceed proportional limit of the column material Euler formula can't be used; we
use the term short columns for these specific cases.
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Figure 1: Stress-strain curves for the super elastic SMA specimen (diameter:2
mm) in compression and tension.
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Calculation of buckling loads of column by different analytical/numerical

schemes is extensively reported in the literature; one of the major reasons of such

studies is the discrepancy of results between the experimental buckling loads and

their predicted values. Those different numerical methods include finite element,

finite difference, as well as strength of materials approach etc. A few of such

studies are listed in the reference. For example, Bert and Ko [1] used finite

difference technique and calculated buckling loads of columns constructed of

bimodular material, which has a different Young's modulus in tension than it has

in compression. Gadalla and Abdalla [2] predicted buckling behavior of

compression members with variability in material and/or section properties based

on eigen solutions. Earlier Li [3] dealt with multi-step non-uniform columns by

analytical approach. Virdi [4] used finite difference method for nonlinear

analysis of structures. It can be noted that in most of those studies eigen value

solutions have been used to predict buckling of columns.
Commercial FEM code ANSYS was used for comprehensive analysis of

slender as well as short columns made of stainless steel and shape memory alloy

by Rahman et al. [5]-[6] . Of course, constant cross-section has been assumed all

along the column span. It was pointed out in those studies that though Euler's

slender column formula can be used for ideal cases, inclusions of actual stress-
strain relations, which are non-linear, may be necessary if one needs to

rigorousiy study the postbuckling path of a column even for a high slenderness
ratio. Moreover, in those of our previous studies, tensile and compressive stress-

strain curves were used separately for simulation purpose. Consequently, it was

concluded that for numerical predictions of response of short beams/columns
made of steel or, shape memory alloy (SMA), simultaneous use of non-linear

stress-strain curves in tension and compression becomes essential in some cases
(Rahman et al. [5]-[6]);

Of course, commercial FEM code ANSYS has material model like Mooney-

Rivlin, that can use both of these tension-compression stress-strain (o-e) curves

simultaneously during modelling. But substantial modifications of the original a-
r curves are necessary while evaluating Mooney-Rivlin constants (Rahman and
Tani [7]). Since, such modifrcations are not always desirable; therefore, Rahman,
Akanda and Hossain [8] and Hossain [9] used both tensile and compressive
stress-strain curves simultaneously. In these studies [8,9], strength of materials
approach, termed as Timoshenko's method [0], was used to calculate the
buckling load of both ends hinged columns with non-symmetric response in
tension and compression. It should be mentioned here that this strength of
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materials method is suited only for both ends hinged columns having constant
cross-section along the column span. A complete study, however, should also
include all practically possible boundary conditions of columns.

Observing the above-mentioned facts, the authors developed a new method

based on finite difference techniques (Chowdhurifl1], Rahman and

Chowdhuri[12]). Based on this method buckling load of column having variable
cross-sections is determined for fixed-hinged end condition.

2 MATHEMATICS MODEL
2.1 Governing equation for initially straight column

Taking into account of geometric nonlinearity, the basic fourth order
governing equation for the analysis of beam-colurlns can be given by

(E Iy " ) "  +Py i i =q (1 )

Where, E, I, y, P and q are modulus of elasticity, area moment of inertia, lateral

deflection, axial load, and distributed lateral load, respectively. Superscript 'i '

indicates differentiation with respect to independent variable x. Thus, the

superscript (n) means, it is differentiating twice with respect to x.

In order to discretize the governing Eq. (1), using the finite difference

expressions for the second order derivative,

d - y  l i * r - 2 ! i * ! i _ r

dxz h 2

The governing equation is obtained as,
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For variable cfoss-sections, the column cross-sections (having constant

thickness and variable width) are assumed as

I: Is(I+osin (m/L))

a i + r  +  4 o i  *  o i - l

o  i + l

-  2 A \ v .

(2)

(3)

Where, ft is strip size, a, is EI at grid l, and

(4)
Where, l is moment of inertia, 1o is the moment of inertia at the end-sections and

a is the shape index. Three different shapes of the column are analyzed: a

constant width for which a :0. and variable widths for which c :0.5 and 1. The
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variable cross-section is chosen in this shape because theoretical critical load in
linear elastic case for this shape is given by Brush and Almroth [r3].

2.2 Governing equation for column with initiar shape imperfection
For a column with initial shape imperfection, governing Eq. (r) can be

rewritten as.

. .  i i  /  \ r :
(EIy") + Ply+ y' l' = q

The initial curved shape is arbitrarily assumed as

y* =c.r. [ ; i )

Where, C. is specifies amount of initial imperfections.
The discretized governing equation corresponding to Eq. (5) for

imperfect column is given below,

ti+z - 14t:2li - A)yi*t + 1ai+r 
r 4ai * ai-r _ 2A\v,

di+r ai+r 
'J '

- 12o' ! 
zo,-t - A) yi-r + 

? y,_, = B + ph2 (y * i*r -! * i * ! * i_r)4 i *1  a i * l '  
'  '

2.3 BOUNDARY COI\DITIONS
Specified boundary conditions for the columns are given below.

For one end fixed and other end hinged condition,

y :0=?  a tx=Q and  r=o=d . ' !  a t  x=L .
dy
dx dxz

conesponding finite difference equations are,
A t x : 0 ,

-3y,* 4!,*r- !i*z= 0

2y, - 5!,_, * 4y,_, - !i_t= 0

(5)

(6)

the

(7)

(8)

(8a)

(8b)

andatx: L,

2.4 rncorporation of materiar nonrinearity in the governing equations
For the linearly elastic columns the elastic modulus z' remains constant

which makes moment of inertia / as the only variable for the term EI. But In
order to calculate nonlinear elastic stiffoess (EI ) at any cross_section of the
column, nonlinear moment-curvature (M-a) relation and nonlinear modulus_
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cnrvature (E-A) relation must be known beforehand as far as columns with
material nonlinearity are concerned. Therefore, Eqs. (9)-(11) are derived based
on equilibrium of bending moment and axial force on any cross-section of the
column. Details of the derivation can be found in Timoshenko tl0] or
Hossain [9].

o-=L  = - l  
t l ' od ,

'  bh ,  L i ,
(e)

(10 )

(11 )

^r _ 121
JVI - ------
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1 )
f r r  r '

n  - - ;

tr

t1

t "\"-') a"
t2

€l

Io('- e) de
t 2

Where, ftr is the constant thickness of column, o" is compressive stress, M is
bending moment, s1 and t2 arte the strains at tension and compression side
respectively. A is the sum of s7 and e2, p is radius of curvature and it is equal
to h, //.

In this study, M-A relation and E-A relation are based entirely on the
experimentally obtained stress-strain curve as in Fig.l.

3 RESULTS AND DISCUSSION
Since, analysis of these columns requires the nonlinear moment-curvature

(M-A) and nonlinear modulus curvature (E-A) relations, two such representative
curyes are shown in Fig.2 and Fig.3. As seen E'decreases gradually for

increasing values of /.

Fig.4 shows the variation of initial values of E"with P for a particular cross-
section. E decreases notably only when the axial load exceeds l700kN, but more
significantly when axial load exceeds 2300kN. All the load-deflection curves for
the nonlinearly elastic columns having constant cross-sections are obtained with
the aid of Fig.4. Many such curves are necessary for a single column having
variable cross-sections that are handled by the computer code. Interested readers
may refer to Chowdhuri [11] for more detail of this point.

The problem of finding E'becomes more tedious when the cross-section is
variable along the column span; a computer program is very useful in this regard.
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Figure 2: Variation of E with/ for SMA column with a: 0.
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Once E is calculated, the code multiplies it with the segment's area moment of
inertia 1 (obtained from equation 4) to obtain E I for that particular segment.
When, ,E'"1 is known for all the discretized cross-sections of the columns for any
compressive load P, all the algebraic equations (out of the governing equations
and boundary conditions) are solved to find the response of the column in terms

of the load-deflection (P-d) curves. It could be mentioned here, since SMA has
non symmetric response in tension and compression (Fig.l), the effect of non
symmetry is included while calculating reduced modulus of elasticity, .8 .

Results are obtained here for three different values of a (0, 0.5 and 1). For

each value of o, results are obtained for three values of L/k: 28,34.65 and 38 for

different end conditions. To keep the volume of the paper a minimum, only
representative results are shown and discussed below:

Figs.S show the load - deflection patterns for fixed-hinged columns with a:

0, 0.5 and I for L/k:34.65. This figure also include load - deflection curves for

column with initial imperfections (C-) of 0.001% of length. From tr'ig.S,

Buckling loads are predicted from these curyes using the theorems of Thompson

and Hunt [14] as 2889.5 kN, 3870 kN and 4822.5KN for o: 0, 0.5 and I

respectively. Due to initial imperfections these loads are decreased to 2530 kN,

3350 kN and 3975 kN respectively. Fig.6 and Fig.7, respectively, show the

buckled shape and bending moments for the variable cross-section column

having a:0, 0.5 and 1. Both the curves correspond to the expected shapes.
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Figure 5: Load-deflection curves for fixed-hinged columns with different a and
L/k = 34.65

Journal of Engineering and Technology Vol. 8, No. 2, 2010

z
,x

a.

) . J

.d.l ' .r"

lx



25

20

t 5

1 0

5

o
o

Figure 6: Deflected
L/k:34.65.

200
x (rm)

of fxed-hinged

E
\

100

shape

300 400 500

columns with different a and

60

u)

20

e
go
E

-20

40

-60

Figure 7: Moment
L/k:34.6s

x (mm)

curve of fixed-hinged columns with different a and

7000

6000

5000

lo00

3000

2000

----r- c:0 withorr inperGction
- - -r- - - e0 with irqrerftction
----+- a: I wittrorr inperfection
- - - e- - - o:l with inper&ct'ron
-----*- a:.5 withorf irqrerftction
- - -x- - - o:0 with irryerEctionz

!

a.

" . ' - " ] " - " ' " - ' - - - ' - - a -

2s 31 33 35 37 39
UK

Figure 8: variation of critical roadwthl/kfor fixed-hinged sMA column.

JouTnal of Engineering and Technology Vol. g, No. 2, 2010

Condition: One end fired. other end hinged



Summary of the results are presented in Fig.8. Here calculated critical loads are
presented with L/k. Buckling loads are remarkably higher for smaller
slenderness ratios in oarticular when slendemess ratio decreases from 34.65
to 28.

4 CONCLUSIONS
Analysis of variable cross-sections SMA column with fixed-hinged end-

conditions is done very effectively by a special numerical method. From the
results the following conclusions can be made,

(i) Buckling loads for columns increases with the increase of shape index

(a) because moment of inertia is increased with a.
(ii) As expected buckling loads for columns are decreased remarkably due

to initial shape imperfections.
(iii) Buckling loads for columns are remarkably higher for lower

slendemess ratio because of the fact that d - s curve in compression
increases nonlinearly for large strain.

(iv) From the above discussions it can be said that although this study
included both geometric nonlinearity and material nonlinearity, the

solution procedures are much simpler compared to other traditional
procedures.

(v) The developed computer code is straight-forward and can be applied
reliably to predict the buckling loads of columns having initial shape
imperfections and of any materials, cross-sections and end conditions.

Usually superelastic SMA can recover large strain through a typical
hysteresis loop that requires the stress-strain diagram during unloading. But this

study concentrates only on the buckling response of the columns which itself is
quite important. Therefore the urfoading issue can be addressed in future studies.

NOMENCLATURE
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Initial imperfection (mm)

Load eccentricity
Modulus of elasticity (GPa)

Nonlinear modulus of elasticity (GPa)

Step size (t"m)

Thickness of column (mm)

t0



I
Is
L
Llk
M
P
q

x

v
€

t1

€2

o
6

4"*
A
d,

Moment of inertia (mma;
Moment of inertia at ends (tr"")
column length (rnm)
Slenderness ratio
bending moment (kN-m)
axial load on column (kN)
Distributed lateral load (kl{/m)
Axial distance (nun)
lateral defl ection (nun)

Strain

Strain in tension side
Strain in compression side
Stress (Pa)

Later aI defl ecti on (nun)

Maximum lateral deflection (mm)

hlp

Shape index
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ABSTRACT
In this paper the step-by-step procedure of obtaining the nefi,vork

equivalent of a large power systern using Power System Simulators for
Engineers (PSSE) is presented. Coherency dmong the generators of the study

system is identitied using the non-linear time domain simulation obtained by

PSSE. Generators with the most identical swing are considered to be coherent.
Dynamic aggregation of the coherent group of generators is performed based

on the Zhukov's method. The accuracy of the procedure is denonstrated by

comparing the steady state and dynamic results of the original and the

equivalent system. The comparisons clearly indicate excellent level of accuracy

achieved from this work. The step-by-step procedure of building dynamic

equivalent presented in this paper will be extremely helpful for the researchers

to understand and work with the commercial PSS/E software.

Keywords: Dynamic equivalent, Coherency identification, Dynamic

Aggregation.
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