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ABSTRACT
Electroencephalogram (EEG) is a complex signal resulting from postsynaptic
potentials of cortical pyramidal cells and an important brain state indicator
with specilic state dependent features. Modern brain research is intimately
linked to the feasibility to record the EEG and to its quantitative analysis. EEG
spectral analysis is an important method to investigate the hidden properties
and hence the brain activities. Spectral analysis of sleep EEG signal provides
acute insight into the features of dffirent stages of sleep which can be utilized
to differentiate between normul and pathological conditions. This paper
describes the process of extracting features of human sleep EEG signals
through the use of tools usedfor spectral analysis of conventional signals. This
paper also discusses statistical analysis of human sleep EEG signals in order to
detect any hidden patterns lying within the human sleep EEG signal of same
kind and nature. To justify the results obtained from applying the spectral and
statistical analysis tools K-Means algorithm and Receiver Operating
Characteristics have been used. It analyzes.the accuracy of the system and
deJines the relationship between the accuracy, reliability and the amount of
test data. This paper also discusses the clinical correlation associated with
sleep EEG signals in brieJi,
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1 INTRODUCTION
EEG is the recording of electrical activity along the scalp produced by the

firing of neurons within the brain [1]. The EEG signal has been used as a
diagnostic tool for a long time to analyze the activity of the brain and is playing a
very important role in diagnosis of diseases and health disorders. Various models
have already been suggested to describe the way that the brain produces the EEG
signal [2]. The physiological investigation of sleep implies the acquisition and
the study of several types of signals. The polysomnographic recordings allow
analyzing at the same time the organization of sleep in stages and cycles and in a
finer way, the microstructures of the registered signals. The brain activities are
characterized by their frequency, amplitude, morphology, stability, topology and
ability to react. They are classified according to their wave band. These
constituents constitute the microstructure of the sleep and the stage of sleep is
largely identified from the microstructure. The human sleep EEG has the
characteristic waveform pattern according to each sleep stage; Stage W, 1,2, 3, 4
and REM. And many studies have been carried out on the automatic human sleep
stage determination systems based on the standard rule proposed by the
Association for Psycho Physiological Study of Sleep (Rechtshaffen and Kales
sleep scoring rules)[3][4]. However, the system is insufficient for extracting
more detail information about sleep stages. Therefore, analysis of the EEG signal
in the time as well as in the frequency domain by using the detailed spectral
analysis was given more interest.

This paper deals with the analysis of sleep EEG signals of human beings.
The sleep EEG signals can be used to identiff disorders and anomalies of a
patient. The healthy sleep EEG patterns are matched with the patterns under
scrutiny and can be analyzed for abnormalities. Various kinds of neurological
diseases can be identified with the help of sleep EEG signals. Sleep disorders,
sleep apnea, mental distress, epilepsy, tumors, cerebrovascular and other brain
lesions etc. are a few prominent names. The sleep EEG analysis can have
prominent applications for sleep apnea patients, monitoring awareness during the
anesthesia and even for paralyzed patients. So the techniques and results
described in this paper can have a very important part in modern medical
facilities to improve the diagnosis tool.

Sleep EEG signals from PhysioNet database [5] are used for the analysis. A
total of 129 EEG signals out of which 68 signals were sleep EEG signals and the
rest 61 signals were EEG signals from wake stage and they were closely
observed and analyzed in this paper. A very useful tool in signal analysis -
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i spectral analysis was chosen first for the analysis. Then variation in magnifude of

I :EG 
signals in various frequency bands of sleeping persons was utilized for

I lrndrng out a concluding index. Therefore the aim of the paper is to establish a

i 
t"lationship between the various stages of human sleep and the EEG waves of
different frequency bands. Different statistical parameters were also used for
finding out a factor for concluding about the results. The accuracy of the
obtained results was also justified using k-means clustering algoriihm and
Receiver operating characteristic (Roc) curve by varying the number of
learning data and test data.

A combination of the above mentioned methods provides acute insight into
the properties of different stages of sleep which can be utilized to identift
disorders. MatlabT'5.0 along with "EEGLAB" toolbox and Sigview were used
for the necessary analysis.

2 MATERIALS AND METHODS
2.lData Collection

A dataset containing 129 full overnight polysomnograms from adult subjects
is used for the analysis which was available from the physioNet Bank database
[5]' The dataset contained 68 EEG signals from various stages of sleep and 6l
EEG signals from wake stage. Polysomnograms from Subjects with no known
cardiac disease, autonomic dysfunction, and not on medication known to
interfere with heart rate were included in the data set.

Subjects were selected randomly (Age: 50 + l0 years; Body Mass Index
(BMI): 31.6 + 4'0 kgrmz, range 25.r-42.5 kg/mz; Apnea Hypopnea Index (AHI):
24'1 + 20'3, range 1.7-90.9). Polysomnograms were obtained using the Jaeger-
Toennies system (Erich Jaeger GmbH, Germany). signals recorded were: EEG
(c3-A2), EEG (c4-Al), left EoG, right EoG, submental EMG, ECG (modified
lead v2), oro-nasal airflow (thermistor), ribcage movements, abdomen
rnovements (uncalibrated strain gauges), oxygen saturation (finger pulse
oximeter), snoring (tracheal microphone) and body position. The
polysomnograms were scored by an experienced sleep speciarist.

2.2EEG pre-processing

EEG signals obtained from PhysioNet Bank database were sampled at tr2g
Hz. The DC offset in EEG signals is removed by using a Finite Impulse
Response (FIR) High pass filter (HPF) of order 200. The DC offset free EEG
signals were further filtered using FIR Band Pass Filter (BpF) with cut-off
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(comer) frequencies of 0.15 - 50 Hz. The output of the filter was then reversed
and passed through the filter again in order to realize a zero-phase digital filter.
The EEG signals were divided into 10 second segments (Fig.l) within and
around the time of different sleep stages scored by the sleep specialist and
annotated in the database of PhvsioNet Bank for further analvsis.

2.3 Data Analysis Methodology
2.3.1 Spectral Analysis

EEG spectrum is divided into five main rhythms. Delta waves, slowest EEG
rhythms and generally have the highest amplitude observed in EEG waveforms
(about 300 pV) with all the frequencies in the range of 0.25 to 4Hz. Theta waves
are typically of smaller amplitude and higher frequency than delta waves. Their
frequency range is normally between 4 and 8 HZ. Alpha waves, which occur
during relaxed states, are regular rhythms of 8 to 12 Hz with lbwer amplitude
than delta and theta waves but higher amplitudes than sigma and beta waves.
Sigma waves are rhythms with frequencies in the range of 12 to 16 Hz and
finally Beta waves, defined as low voltage (around 5 pV) and high frequency
waves (14 to 40 Hz, sometimes as high as 50 Hz).The different sleep stages are
characterized by the presence of certain EEG rhythms while by the absence of
others 16,7l.The power spectral density (Fig.2) estimate was calculated using
the Welch Method of averaged periodograms for in the entire frequency range of
I-50 HZ and also for the particular EEG rhythms (delta, theta, alpha, sigma &
beta with the defined frequency ranges of 0.25-4 Hz, 4-8 H48-12 Hz, 12-16 Hz,
and l6-40 Hz respectively). Average power of delta, theta, alpha, beta and sigma
frequency bands was calculated. In order to calculate the average power for
individual frequency bands, elliptical bandpass filters with appropriate passband
and cutoff frequencies were used to separate the particular bands from the EEG
data and then average power within that particular frequency band was
calculated. The values of the power spectral estimate obtained for each frequency
band was then normalized by the power spectral estimate of the signal in the
entire frequency range from 1-50 Hz.

2.3.2 Statistical Analysis
The mean, indicated by p, is the statistician's jargon for the average value of a
signal. Mathematically the mean can be expressed as
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Figure 1: EEG signal segment containing 10 seconds of data.
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Figure 2: Power spectral density estimate of EEG signal segment.

A more generalized parameter called the standard deviation, denoted by o is
given by the equation,
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The expression, l.:. - .r l, describes how far the sample ith deviates (differs)
from the mean. The average deviation of a signal is found by summing the
deviations of all the individual samples, and then dividing by the number of
samples, N. The absolute value of each deviation is taken before the summation;
otherwise the positive and negative terms would average to zero. The standard
deviation is similar to the average deviation, except the averaging is done with
power instead of amplitude [8]. In the alternative notation,

*  =  ,  i r ;  I  - : , i : - i i r  - , ; i  r l  ;  i r ' .  - I  i i  =  ' . "  ; _  1 . t _ . . _ .  _  : r - : :

The term o:, occurs frequently in statistics and is given the name variance. The
standard deviation is a measure of how far the signal fluctuates from the mean.

The histogram displays the number of samples there are in the signal that
have each of these possible values. The histogram is represented by 3,, where 'i '

is an index that runs from 0 to M-1, and M is the number of possible values that
each sample can take on. Just as with the mean, the statistical noise (roughness)
of the histogram is inversely proportional to the square root of the number of
samples used. From the way it is defined, the sum of all of the values in the
histogram must be equal to the number of points in the signal,

(4)
The histogram can be used to efficiently calculate the mean and standard

deviation of very large data sets. The mean and standard deviation are calculated
from the histogram by the equations [9],

distance estimation used as a nonparametric test of equality of one-dimensional
probability distributions used to compare a sample with a reference probability
distribution (onesample K-S test), or to compare two samples (two-sample K-S
test). The Kolmogorov-Smimov statistic quantifies a distance between the
empirical distribution function of the sample and the cumulative distribution
function of the reference distribution, or between the empirical distribution
functions of two samples.

Under null hypothesis that the sample comes from the hypothesized
distributionFi.c.r, ,il$n * t*1,.mii{tli in distribution, where B(t) is the
Brownian Bridge [9]. If F is continuous then under the null hypothesis

,'?$converges to the Kolmogorov distribution, which does not depend on F.
This result is also known as the Kolmogorov Theorem. The goodness-of-fit test
or the Kolmogorov Smirnov test is constructed by using the critical values of the
Kolmogorov distribution. The null hypothesis is rejected at level o if,
..';3- > ;!'*, where *. is found from,

F r i F i ' < "  F J ^ i =  t -  m
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In statistics, a Q-Q plot [10] ("Q" stands for quantile) is a probability plot,
which is a graphical method for cornparing two probability distributions by
plotting their quantiles against each other. If the two distributions being
compared are similar, the points in the Q-Q plot will approximately lie on the
line y : x. If the distributions are linearly related, the points in the Q-Q plot will
approximately lie on a line, but not necessarily on the line y : x. Q-Q plots can
also be used as a graphical means of estimating parameters in a location-scale
family of distributions. A Q-Q plot is used to compare the shapes of
distributions, providing a graphical view of how properties such as location,
scale, and skewness are similar or different in the two distributions. Q-Q plots
can be used to compare collections of data, or theoretical distributions.

The use of Q-Q plots to compare two samples of data can be viewed as a
nonparametric approach to comparing their underlying distributions. A Q-Q plot
is generally a more powerful approach to doing this than the common technique
of comparing histograms of the two samples, but requires more skill to interpret.
Q-Q plots are commonly used to compare a data set to a theoretical model [11] -

lt2l.
This can provide an assessment of "goodness of fit" that is graphical, rather

than reducing to a numerical summary. Q-Q plots are also used to compare two
theoretical distributions to each other [13]. Since a-a plots compare
distributions, there is no need for the values to be observed as pairs, as in a
scatter plot, or even for the numbers of values in the two groups being compared
to be equal.

The mean and the standard deviation of the time domain EEG signals arc
recorded along with the distribution of the data and the results of the
Kolmogorov - Smirnov Test. They are checked closely to find out whether
something is common for same kinds of signals. The histogram, Q - Q plot and
other statistical parameters as shown in the Fig.3 were closely observed and
analyzed.

3 ANALYSIS RESULTS
For the spectral analysis, the total frequency - spectra was subdivided in the

five bands namely Delta, 5 (1.3 - 3.5); Theta, 0 (3.5 - 7.5); Alpha, u (7.5 - l2);
Sigma, o (12 - 14) and Beta, B (14 - 35). All the bands of all the signals are
analyzed in detain and maximum value of the band along with the position of
maximum value, minimum value of the band along with the position of
minimum value and mean of all the bands are closely observed as well as
recorded. All the parameters as mentioned are given for a subject in Table l.

It is observed in most of the cases that the ratio of the mean, maximum value
and minimum value of the Delta and Theta band as well as the ratio of the Alpha
and Sigma band is greater than I in the sleep EEG signals whereas these values
are less than 1 for wake EEG signals. Along with this, it was also observed that
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there is any pattern of discontinuity in the frequency domain of the
corresponding EEG signals as depicted in Table - 1.

Just like spectral analysis, in this part also, the PSD was observed band by
band for every signal. Here only the maximum and minimum values of all the
bands are analyzed and compared with complimentary bands. In this case the
values are in dB since PSD is calculated in logarithmic scale. Now the Theta
band is subtracted from Delta band and Sigma band is subtracted from Alpha
band for both the maximum and minimum values for all the signals. It is now
observed that, this subtraction result is positive for sleep EEG signals and
negative for wake EEG signals for almost all the cases, as expected from the
spectral analysis. So the argument stated in the results of the spectral analysis is
well established from the PSD analysis (Table - 2).
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Figure 3: Data Histogram, Q-Q Plot and different statistical parameters of
subject EDF (Fpz-Cz).
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Table-l: Different Spectral Component of a certain subject
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Table-2: Different PSD Parameter of a certain subject
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The mean and the standard deviation of the time domain EEG signals are
recorded along with the distribution of the data and the results of the
Kolmogorov - Smirnov Test. They are checked closely to find out whether
something is common for same kinds of signals. The histogram, Q - Q plot and
other statistical parameters as shown in the tr'ig.3 were closely observed and
analyzed. Though same was done for all the subjects but from statistical analysis
nothing special was found and the result was random.for similar type of subjects.
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Figure 4: PSD of a certain subject.

4 JUSTIFICATION OF THE RESULTS
4.1 K-Means Algorithm

In statistics and machine learning, fr-means clustering is a method of cluster
analysis which aims to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean. It is similar to the
expectation maximization algorithm for mixtures of Gaussians in that they both
attempt to find the centers of natural clusters in the data as well as in the iterative
refinement approach employed by both algorithms [4] - [8]. Given a set of
observations x1, x2,...,-r, where each observation is a d-dimensional real vector, fr-
means clustering aims to partition the n observations into k sets (k < n) ,S: &, Sz
....., ̂ l* so as to minimize the within-cluster sum of squares (WCSS):

{

TT ' , {n  -  u , , ' i
?"*t  '= '  r  '

(8)
The most common algorithm uses an iterative refinement technique. Due to

its ubiquity it is often called the fr-means algorithm; it is also referred to as
Lloyd's algorithm, particularly in the computer science community tl9l - t201.

4.2 Receiver Operating Characteristics (ROC)

In signal detection theory, a receiver operating characteristic (ROC), or
simply ROC curve, is a graphical plot of the sensitivity, or true positives, vs. (1 -

specificity), or false positives, for a binary classifier system as its discrimination
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threshold is varied l21l - [23]. The ROC can also be represented equivalently by
plotting the fraction of true positives (TPR: true positive rate) vs. the fraction of
false positives (FPR : false positive rate). It is known as a Relative Operating

Characteristic curve, because it is a comparison of two operating characteristics
(TPR & FPR) as the criterion changes [24]. ROC analysis provides tools to select
possibly optimal models and to discard suboptimal ones independently from (and
prior to speciffing) the cost context or the class distribution. ROC analysis is
related in a direct and natural way to cost/benefit analysis of diagnostic decision
making l25l - [28]. A classification model (classifier or diagnosis) is a mapping

ofinstances into a certain class/group. The classifier or diagnosis result canbe in

a real value (continuous output) in which the classifier boundary between classes

must be determined by a threshold value, for instance to determine whether a
person has hypertension based on blood pressure measure, or it can be in a
discrete class label indicating one of the classes. Let us consider a two-class
prediction problem (binary classification), in which the outcomes are labeled

either as positive (p) or negative (n) class. There are four possible outcomes from

a binary classifier. If the outcome from a prediction is p and the actual value is
also p, then it is called a true positive (TP); however if the actual value is n then

it is said to be a false positive (FP). Conversely, a true negative has occurred
when both the prediction outcome and the actual value are n, and false negative

is when the prediction outcome is n while the actual value is p. Let us define an
experiment from P positive instances and N negative instances. The four
outcomes can be formulated in a 2x2 contingency table or confusion matrix, as
shown in Fig.S.
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Figure 5: Contingency Table of ROC.
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The contingency table can derive several evaluation "metrics". To draw an ROC
curve, only the true positive rate (TPR) and false positive rate (FPR) are needed.
TPR determines a classifier or a diagnostic test performance on classifuing
positive instances correctly among all positive samples available during the test.
FPR, on the other hand, defines how many incorrect positive results occur among
all negative samples available during the test. An ROC space is defined by FPR
and TPR as x and y axes respectively, which depicts relative trade-offs between
true positive (benefits) and false positive (costs). Since TPR is equivalent with
sensitivity and FPR is equal to 1 - specificity, the ROC graph is sometimes called
the sensitivity vs (1 - specificity) plot. Each prediction result or one instance of a
confusion matrix represents one point in the ROC space. The best possible
prediction method would yield a point in the upper left corner or coordinate (0,1)

of the ROC space, representing 100% sensitivity (no false negatives) and 100%
specificity (no false positives). The (0,1) point is also called a perfect
classification l29l - l32l.A completely random guess would give a point along a
diagonal line (the so-called line of no-discrimination) from the left'bottom to the
top right corners. The diagonal divides the ROC space. Points above the diagonal
represent good classification results, points below the line poor results. The
confidence level tells how much srre one can be regarding the obtained results. It
is expressed as a percentage and represents how often the true percentage of the
population who would pick an answer lies within the confidence interval. The
95To confrdence level means one can be 95Yo certain about the obtained results.

5 DISCUSSIONS

The method is applied to a total of 129 EEG signals. Among them 68 signals
are sleep EEG signals and the remaining 6l signals are awake EEG signals. If all
the signals are considered as the training signals, then it is found from the ROC
curve (as shown in F'ig.6) that, the system provides 69Yo accvate results. Now if
it is considered that, out of 68 sleep EEG signals 40 are training signals and the
remaining 28 are test signals and for awake stage, 40 are training signals and the
rest 21 are test signals. Then the system provides 2l.3yo accurate results.
However the result is unacceptable since the false positive area is larger as
shown in Fig.7.

If it is considered that, out of 68 sleep EEG signals, 50 are training signals
and the remaining 18 are test signals and also for awake stages, 50 are training
and rest ll are test signals; then the system provides 59.1% accurate results
which is quite acceptable. This is because the true positive area is larger as
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shown in Fig.8. Again if it is considered that, out of 68 sleep EEG signals 55 are

training signals and the remaining 13 are test signals and also for awake stages,

55 are training and the rest 6 are test signals. Then the system provides 590lo

accurate result which is acceptable. This is because the true positive area is larger

as shown in Fig.9.

In a nutshell, it can be concluded that, when the number of training signals is

higher, then the accuracy of the system increases and when the number of

training data is less, then the accuracy of the system decreases as depicted in

Fig.10. So it is always better for one to find the accuracy of the result obtained

considering a large number of training data.
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Figure 8: ROC curve considering 50 signals as test signals.

Figure 9: ROC curve considering 55 signals as test signals.
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Figure l0: Variation of accuracy of the system with the change in the number of
training signals (example data).

Journal of Engineering and Technology Vol. 8, No. 2, 2010 46

*TFff EilI

I



6 CLINICAL CORRELATION
The sleep EEG signals can be used to identifu disorders and abnormalities.

The healthy sleep EEG patterns are matched with the patterns under scrutiny and
can be analyzed for abnormalities. Various kinds of neurological diseases can be
identified with the help of EEG signals. Sleep disorders, sleep apnea, mental
distress, epilepsy, tumors, cerebrovascular and other brain lesions etc. are a few
prominent names. Significant research activities are going around the world to
develop these techniques. With the improvement of the biomedical signal
acquisition tools and signal processing techniques, it is likely that the
effectiveness and accuracy of this kind of analysis will grow up by manifolds.

7 CONCLUSIONS

Biomedical signal processing is one of the flourishing areas of modern
science and engineering with EEG signal processing is one of the very important
facets of this area. Tremendous research and development activities are going

around the world. Medical science in collaboration with modern engineering
techniques can provide a massive amount of useful information and solutions in
this freld. Signal processing techniques are part and parcel of EEG analysis. This
paper used the technique of Discrete Wavelet Transform and Fast Fourier
Transform to characterize the various stages associated with human sleep. This
technique can be useful in extracting features of the sleep EEG signals at a very
low cost with the aid of computers. The accuracy of this technique is likely to be
raised with the improvement of the biomedical signal acquisition tools, with the
development of digital filters and of course with the development of more
accurate signal processing algorithms.

REFERENCES

tl] E. Niedermeyer, Lopes da Silva, F., Elechoencephalography, 4th Ed.,
1999, Williams & Wilkins, Baltimore, MD, 1258 pp.

l2l Atlas of EEG & Seizure Semiology. B. Abou-Khalil; Musilus, K.E.;
Elsevier, 2006.

t3] AH Khandoker, CK Karmakar, M Palaniswami, "Interaction between
Sleep EEG and ECG Signals during and after Obstructive Sleep Apnea
Events with or without Arousals", IEEE Computers in Cardiology 2008;
35:685-688.

Journal of Engineering and Technology Vol. 8, No. 2, 2010 47



t4] Jurysta F, van de Borne P, Migeotte PF, Dumont M, Lanquart JP, Degaute
JP, and Linkowski P, "A sfudy of the dynamic interactions between sleep
EEG and heart rate variability in healthy young men", Clin Neurophysiol
2003; 114:21462155.

t 5 I http : //www.physionet. org/physiobank/database/sleep-edf

t6] W. B. Meldenson "Human Sleep, Research and Clinical Care" Plenum
Medical Book Company New York and London", 1987,pp 6-12.

l7l J. G. Webster "Medical Instrumentation, Application and Design" Third
Edition, Wiley 1998, pp 165-171

t8] Robert Grover Brown & Patrick Y.C. Hwang (1997), "Introduction to
Random Signals and Applied Kalman Filtering", John Wiley & Sons,
ISBN: 0471128392.

t9] "An Introduction to the Theory of Random Signals and Noise", Wilbur B.

Davenport and Willian L. Root, IEEE Press, New York, 1987, ISBN: 0-

87942-235-t.

[10] Gnanadesikan, R.; Wilk, M.B. (1968). "Probability plotting methods for

the analysis of data". Biometrika (Biometrika Trust) 55 (1): 1-17. PMID

5661047.

[11] Macmillan Dictionary for Students Macmillan, Pan Ltd. (1981), page 936.
Retrieved 2009-10-1.

lI2) E. Niedermeyer, Lopes da Silva, F., Electroencephalography, 4th Ed.,

1999, Williams & Wilkins, Baltimore, MD, 1258 .

[13] Guler, I., Kiymik, M.K., Akin, M., & Alkan, A, "AR spectral analysis of

EEG signals by using maximum likelihood estimation", Computers in
Biology and Medicine, 3I, 441450, 2001,

[14] MacQueen, J. B. (1967). "Some Methods for classification and Analysis of

Multivariate Observations". l. Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability. University of California Press. pp.

281197 . MR0214227 . Zbl 0214.46201 . Retrieved 2009-04-07 .

Journal of Engineering and Technology Vol. 8, No. 2, 2010 48



[ 15 ]

u6l

Steinhaus, H. (1956). "Sur la division des corps mat6riels en parties" (in
French). Bull. Acad. Polon. Sci. 4 (12): 801-804. MR0090073. Zbl
0079.16403.

Lloyd, S. P. (1957). "Least square quantization in PCM'. Bell Telephone
Laboratories Paper. Published in journal much later: Lloyd., S. P. (1982).
"Least squares quantization in PCM". IEEE Transactions on Information
Theory 28 (2): 129-137 . doi: I 0. I 1 09/TIT. 1 982.1056489. Retrieved 2009-
04- 15.

Aloise, D.; Deshpande, A.; Hansen, P.; Popat, P. (2009). "NP-hardness of
Euclidean sum-of-squares clustering". Machine Leaming 75 245-249.
doi: I 0. 1 007/sl 0994-009-5 103-0.

U8l Dasgupta, S. and Freund, Y. (July 2009). "Random Projection Trees for
Vector Quantization". Information Theory, IEEE Transactions on 55:
3229- 3242. doi:10.1 109 nrc .2009.2021326.

tl9l Inaba, M.; Katoh, N.; Imai, H. (1994). "Applications of weighted Voronoi
diagrams and randomization to variance-based k-clustering". Proceedings
of 10th ACM Symposium on Computational Geometry. pp. 332-339.
doi: 1 0. 1 145 / I7 7 424.17 8042.

I20l Vattani, A. (2009). "k-means requires exponentially many iterations even
in the plane". Proceedings of the 25th Symposium on Computational
Geometry (SoCG).

t2ll Signal detection theory and ROC analysis in psychology and diagnostics :
collected papers; Swets, 1996.

l22l J. Fogarty, R. Baker, S. Hudson (2005). "Case studies in the use of ROC
curve analysis for sensor-based estimates in human computer interaction".
ACM International Conference Proceeding Series, Proceedings of
Graphics Interface 2005. Waterloo, Ontario, Canada: Canadian Human-
Computer Communications Society.

l23l Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition
Letters, 27 , 861*87 4.

Journal of Engineering and TechnologyVol. S, No.2, 2010

[17]

49



L24l Hand, D.J., & Till, R.J. (2001). A simple generalization of the area under
the ROC curve to multiple class classification problems. Machine
Learning, 45,17I-186.

l25l Hanley, JA; BJ McNeil (1983-09-01). "A method of comparing the areas
under receiver operating characteristic curves derived from the same
cases". Radiology 148 (3): 839-843. PMID 6878708. Retrieved 2008-12-
03.

126l McClish, Donna Katzman (1989-08-01). "Analyzing a Portion of the ROC
Curve". Med Decis Making 9 (3): 190-195.
doi:10.1 I77 10272989X8900900307. PMID 2668680. Retrieved 2008-09-
29. 

'

l27l Dodd, Lori E.; Margaret S. Pepe (2003). "Partial AUC Estimation and
Regression". Biometrics 59 (3): 614-623. doi: I 0. I Il | / 154I-0420.0007 1.
PMID 146017 62. Retrieved 2007 -12-18.

l28l D.M. Green and J.M. Swets (1966). Signal detection theory and
psychophysics. New York: John Wiley and Sons Inc.. ISBN 0-471-32420-

l29l M.H. Zweig and G. Campbell (1993). "Receiver-operating characteristic
(ROC) plots: a fundamental evaluation tool in clinical medicine". Clinical
chemistry 39 (8): 561,-577. PMID 8472349.

[30] M.S. Pepe (2003). The statistical evaluation of medical tests for
classification and prediction. New York: Oxford.

[31] N.A. Obuchowski (2003). "Receiver operating characteristic curves and
their use in radiology". Radiology 229 (1): 3-8.
doi: 1 0. I I48lradiol.229 1 0 I 0898. PMID 1 45 1 986 1 .

l32l Spackman, K. A. (1989). "Signal detection theory: Valuable tools for
evaluating inductive learning". Proceedings of the Sixth International
Workshop on Machine Learning. San Mateo, CA: Morgan Kaufmann.
pp.160-163.

Journal of Engineering and Technology Vol. 8, No. 2, 2010 50


