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ABSTRACT
In this study, the numerical analysis has been carried out to investigate the

Jluid flow behaviors uround various bluff bodies in a two dimensional micro-

channel using Lattice-Boltzmann Method (LBM).The LBM has been built ap

on the D2Q9 (two dimensional lattice with nine velocities) model with single
relaxation method called Lattice-B;GK (Bhatnagar-Gross-Krook) model.
Streamlines, vorticity, velocity and pressure contours are provided to analyze
the important characteristics of the flow fteld for a wide range of the
non-dimensional parameter Reynolds number (Re).The simulation results are

compared with the experimentul results and the results oibtained from the other
numerical models and the dgreement is found to be very reasonable and
satisfactory.
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1 INTRODUCTION
Lattice Boltzmann Method (LBM) has attracted much attention as a novel

alternative to traditional methods for solving the Navier-Stokes (N-S) equations.

In Computational Fluid Dynamics (CFD), fluid properties, such as density,

pressure, velocity and temperature are typically described by the Navier-Stokes

(N-S) equations, which have nonlinear terms making them too expensive to solve

numerically. However, the LBM has demonstrated a significant potential and

broad applicability with numerous computational advantages, such as the parallel

of algorithm, the simplicity of programming, and the ability to incorporate

microscopic interactions. It is commonly recognizedthat the LBM can faithfully

be used to simulate the incompressible N-S equations with high accuracy and this

lattice BGK (LBGK) model, the local equilibrium distribution has been chosen to

recover the N-S macroscopic equations by different authors [-3]. An overview

of LBM, a parallel and efficient algorithm for simulating single-phase and

multiphase fluid flows and also for incorporating additional physical

complexities have been discussed by Chen and Doolen [4]. Lattice gas models

with an appropriate choice of the lattice symmetry in fact represent numerical

solutions of the Navier-Stokes equations and therefore able to describe the

hydrodynamics problems discussed by Mcnamar et al. [5]. Due to the sampling

of the particle velocities around zero velocity, LBM is limited to the low Mach

number (nearly incompressible flow) flow simulation [6]. Actually, LBM

originated from the Lattice Gas Automata (LGA) method, which can be

considered as a fictitious molecular dynamics (MD) in which space, time and

particle velocities are all discrete. This discretization of space and time first

proposed by Hardy et al. [7], was called HPP model, define on a square lattice

for studying transport properties of fluid. When two microscopic particles arrive

at a node in the two opposite direction, they immediately leave the node in the

two others, previously unoccupied directions. These rules conserve mass and

momentum. A historical important lattice gas model is the FHP model,

introduced by Frisch et at. iAl.fne updating the grid involves two types of rules:

propagation and collision. Propagation means the microscopic particles move to

the nearest neighbor along their velocity direction. Collision is the most

important part; it can force particles to change direction and is decided by the

collision operator. A particularly simple linearized version of the collision

operator makes use of a relaxation towards an equilibrium value using a single

relaxation time parameter known as the so-called Bhatnagar-Gross-Krook (BGK)

model first describe by Bhatnagar et al.[9]. The simulation of flow around bluff
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bodies both in numerical and experimental studied by [0-la]. In their study they

consider very large Reynolds number and they used commercial tools. There is

no doubt that LBM has several advantages over other conventional CFD

methods, especially in dealing with complex boundaries, incorporating of
microscopic interactions, are described in the excellent books by authors [15-17].
The objective of this paper is to numerically study of fluid flow behaviors around

bluff bodies using LBM where the flow can be driven with the pressure (density)
gradient. The flow is very sensitive to the change of Reynolds number, a
dimensionless parameter, based on the characteristic length of our bluff bodies,
the maximum incoming flow velocity and also the nature of fluid transport
properties.

2 FORMULATION OF THE PROBLEM
2.1 Mathematical Model

The Lattice Boltzmann method is based on the idea of lattice gas cellular
automata (LGCA) to simulate the fluid motion by a simplified microscopic
model in discrete time steps using a discrete phase space, i.e. discrete velocity
and location. Each cell of the resulting lattice represents a volume element of the
fluid, which consists of a collection of particles. Their motion is represented by a
particle distribution function (PDF) at each grid point. The macroscopic variables
of interest (i.e. density, pressure, velocity) can easily be obtained from these
particle distribution functions (PDF). In contrast, the Boltzmann equation deals

with the single particle distribution function (PDF), .f Q,(,0, wheref denotes

the particle velocity vector in phase space (/, f) and time r. Neglecting external

forces, the transport equation for f can be expressed by the Boltzmann equation
(BE) as,

ff.(erV=ocr) (1 )

(2)

The terms on left hand side of Eq.l is called the transport term and the right hand
side is called the collision term. A suitable linearized form of the collision
operator for near equilibrium sate of low Mach number hydrodynamics is the
single relaxation time approximation, also known as Bhatnagar - Gross -Krook

(BGK) model.

Qacr( f l=- I f f - f "n)
t
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Figure 1: A schematic diagram of the D2Q9 square lattice model.

where, the relaxation parameter, q is linked to the viscosity (v) of the fluid. In
order to solve for / numerically, it is necessary to discretize the Eq.l in the

velocity space using a finite set of particle velocity vectorsdi, i:0, l----, Q-1,
where 4 is the number of directions of the particle velocities at each node and
then combining with Eq.2, the Boltzmann equation with BGK approximation
becomes:

af, af, | --
?* " , .#=- : ( . [ i - - t fn l ,  i : 0 ,1 .2 - - - - - ,q - l  (3 )
OT OX: T

Here, j,(i,l)is the velocity discrete particle distribution function andf,"q is the

discrete equilibrium distribution function. It is almost impossible to perform the
simulations with this form of the Boltzmann equation, if the phase (direction of
particle velocities) is infinite. Hence, the simulation is carried out on a finite
discrete phase space known as lattice and is labeled by DdQq with the number of
space dimensions d and the number of discrete velocities q. In practice, there are
three widely used 2D LBM geometries: D2Q5, D2Qi and D2Q9. For D2Q9
model, each node of the lattice has three kinds of particle: a rest particle, particles
that move in the co-ordinate directions and the oarticles that move in the
diagonal directions as shown in Fig.l.

The total number of discrete velocities on each node in D2Q9 model is 9.
The velocities of the particles are such that they move from one node to another
during each time step. These particle velocities can be written as,
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where, c is called the Courant-Friedrichs- Lewy (CFL) number. Therefore, the
discrete form of Eq.3 is called the Lattice Boltzmann equation (LBE) and can be
written as,

J' ,6 + Lt  O,, t+ A/)  -  f , ( i , t )  = - ! ( f ,  -  . f , r ) ,  i :0,1,2----- ,  8 (4)
T

Here, llr is the relaxation parameter. It also depends on the local

macroscopic variables p and pu and satisff the following laws of conservation:

Zf: and' Pil =Ld, f,* (s), =  r ,  
!

Note that the Navier -Stokes equations has a second order non-linearity. So
the general form of the equilibrium distribution function can be written up to
o1a2; 1:1,

.f,"n : pw,lt+|u,., *!g,.4, -!- url (6)
c '  2c '  

'  
2c '

where, the lattice weighting factor (wi) depends only on the lattice model. For
D2Q9 model, ws : 419, wi : | 19, i : 1,2,3,4, and wi : | 136, i : 5,6,7,8. Using the
Chapman-Enskog expansion 16], it is mathematically provable that the Eq.6 can
recover the N-S equation to the limit of low Mach number if the pressure and the
kinetic viscosity are defined by,

P : Ntt and v: (r-tl2) Cs2 Lt (7)

Here, the speed of sound is defined by Cs =Jnf .Here the temperature Z

has no physical significance as we are only dealing with the isothermal model
(f : constant). And thus, the grid CFL number can be defined as

, = J3RT = Lx I A,t. Therefore, the speed of sound becomes Cs = c I Ji .

2.2 Numerical Analysis and Boundary Conditions
Consider two-dimensional steady compressible flow around a bluff body e.g.

a square cylinder or a circular cylinder that placed symmetrically at the central
line of the channel. The computational domain is to consider as a rectangular
region L x H, where L e 4A is the length and H is the height of the channel as
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Figure 2: Physical models and coordinate systems.

shown in Fig.2. The upper and lower plates are stationary. The diameter (or h:
height for square cylinder) of the circular cylinder is d: Hl5. All simulations in

this part are based on 400 x 100 uniform lattice nodes. The cylinder diameter (d)

or height (ft) is approximately 20 grid cells.
If the flow is laminar and fully developed, the velocity rz is given by the

Poiseuille*Hagen distribution,

(8)

It is a parabolic velocity profile with the maximum velocity U at the center line

of the channel. In an incompressible flow, the Reynolds number is one of the
major controlling parameters that control the flow field. It is defined by
Re : Uh/v, where ft is the characteristic length (or diameter d for circular

cylinder) of the bluff body, U is the maximum incoming flow velocity (less than

0.L lu, lattice unit) and v is the kinematic viscosity of fluid. Actually, flow can be

driven with the pressure (density) gradient of any desire magnitude by setting the

boundaries densities in accordance with the Eq.5 provided the maximum

velocity remains small relative to 0.1 lu. FinaLly the Eq.4 is solved on a uniform

2D grid system along with boundary conditions and other equations are

described in section. Each numerical time steps consists of three stages:
(i) Collision,

(ii) Streaming, and
(iiD Boundary conditions followed by the LBM approaches.
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Since the variables of interest are the macroscopic quantities, the LBM needs to

be able to handle initial and boundary conditions that are prescribed in terms of

the fluid density and velocity. The initial density is set to be 1.0 and the value of

the velocity is set to be zero in the interior of the channel. The boundary

conditions play an important role for the stability and the convergence of the

Lattice-Boltzmann method. In the top and bottom wall, including the surfaces of

the bluff body, no slip boundary conditions namely zero fluid velocity are

applied. In LBM, there are two types of solid:
(i) Botrndary solids that lie at the solid-fluid interface, called mid-grid

or half way bounce-back no slip condition.
(ii) Isolated solids that do not contact fluid .i.e. the physical boundary

lies exactly on a grid line, called on-grid or fuIl bounce-back no

slip condition or simply bounce back scheme.

Thc simulation has been performed by using LBM assumes the full way

bounce back boundary conditions at upper and lower plate. In this rule; particles

colliding with a wall simply reverse their velocities. For more details about

boundary conditions, are given in reference [7]. Most LBM simulation Ax and

A/ are assumed as the space and time unit respectively and it is called lattice unit.

In this simulation, it is considered that, Lx : llu : I.27xl0-7 m, Lt : I,

ts : 4.L7xl0-1r s. The fluid properties are taken to water properties. The

kinematic viscosity, v :1.006x 10-6 m2/s (water at 300Q, corresponds to 0.004

latticc unit. All reported data are obtained on our calculation domain 400 x 100
(lattice node). Thus the physical domain of simulation is 40 prn x l0 W. For

accurate solution, the Mach number, Ma, should be kept as small as possible. In
gencral, the maximum incoming fluid velocity U is considered in the LBM in

ordcr of 0.2 or 0.1 or less. Therefore, the Reynolds number should be chosen

very carefully. The time is scaled with the lattice time unit and it is considered

100,000 time steps (iterations). Through out the simulation, the lattice units are

considered. The computations were carried out with a code developed by the

authors and written in FORTRAN language

3 RESULTS AND DISCUSSIONS

In conventional CFD methods for incompressible N-S equations, the Poisson

equation is solved for the pressure, while in LBM, solving the Eq.4 all
information including pressure can obtain that are interested to our study. The
numerical simulation of flow characteristic around a square cylinder and a
circular cylinder were carried out for Reynolds number in the range up to 300.
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Since, for this kind of flow, no experimental values are available, the typical

features of the fluid flow behaviors are investigated. In order to assess the

accuracy of this method, the result of LBM is compared with analytical solution

define by,

1 .> -- ,dp dp
u e x a c t = ^  ( y ' - y H ) + , 7 = - 8 p v u l H 2 "  "  ( 9 )

zpv ax 0x

Here H is the channel heieht and U is the maximum velocitv located in the center
of the channel.

In Fig.3, the result is compared with analytical solution for Re :100 and 200.
The solid lines are the analytical solution and the dashes lines are the data results

obtained from the simulation. This figure shows that the velocity profile in the
channel is parabolic and the maximum value at the middle position of the

channel. It is obviously as the fully developed laminar parabolic flow is
considered and it is seen that our results (LMB) are in excellent agreement with
analytical solution Eq.9. This confirms the accuracy of our simulation.

ln Fig.4, the velocity in x-direction is plotted against the height of the
channel at different locations x/L: 0.375 (near the body), 0.5 (cross section of
the channel) and 0.75 (far from the body) for different values of Reynolds
number. From Figs.4 (i)-(iii), it is seen that the flow is almost symmetrical
around the bluff bodies for low Reynolds number throughout the channel. It has

two local maximum and one local minimum values, where the local maximum

occur at the upper and lower part of the body and the minimum occur at the
center part of the body. The solid lines' represent the velocity for Re : 50 and
dashes lines represent the velocity at Re: 100. However, the flow around

Ana. Re:1OO
- - I - -  L B M , R e : I O O

Ana. Re:20O
-- - ' . l  .. LBM. Re:2OO

Figure 3: Veriff LBM with analytical result for different values of Re.
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Figure 4: Velocity in x-direction around a circular cylinder (o) and a square
cylinder (r) for different Re at (i) x/L:0.375, (ii) x/L:0.50 and (iii) x/I:0.75.
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circular or square cylinder with Re : 100 loses its symmetry. In addition, the
difference between local maximum and minimum significantly reduces and tends
to maximum at the centerline of the channel. This is obvious. because. it is
introduced the Poiseuille-Hagen velocity distribution, where the flow behavior is
parabolic and the maximum occur at the center. From above figures, it is
investigated that the flow around the circular cylinder and the square cylinder are
significantly different for high Reynolds number but for low Reynolds the flow
behavior almost similar for both bluff bodies.

Figs.5-10 show the streamwise velocity, pressure and vortex contours for
different Reynolds number in the x-y plane.

The velocity contours for different Reynolds numbers, Re:50,100 and 200,

are shown in Fig.5 and Fig.6 respectively. For lower Reynolds numbers, the fully
developed velocity profiles are seen (Fig.s (i) and Fig.6 (i)). It means that the
flow behavior is approximately symmetrical whereas for higher Reynolds

(i)

(ii)

t/lilmni.

(ii i)

Figure 5: Velocity contours around a circular cylinder for (i) Re : 50,
(ii) Re : 100 and (iii) Re :200.
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(iii)

Figure 6: Velocity contours around a square cylinder for
(ii) Re : 100 and (iii) Re :200.

Re : 50,

(i)

(ii)

Figure 7: Pressure contours around a circular cylinder for (i) Re : 100 and
(i i )  Re :200.
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number it makes more contours. However, for all cases, it is observed a negative
recirculation zone just after the bluff bodies. This means that low speed flow
promotes reattachment as it more laminar, but if the Reynolds number is
increased, the transition form reattachment type to separated type of flow
happened. However, for high Reynolds number, the velocity contours are marked

with the recirculation zones downstream of the bodv with maximum velocity at
the center.

Apart from the velocity profiles, the pressure distribution is important in the
study of flow around bluff bodies are shown in Fig.7 and Fig.8. These figures

show the close interaction of the vertical flow developing in the wake region of
the body with the walls of the channel for higher Reynolds number and there are
many recirculation regions present in the wake of the body. At the stagnation
point, where the velocity is at rest with maximum pressure and it is seen in front

of the bluff bodies. On the other hand, for higher Reynolds number, the pressure

contours have shown more complex and unstable. This is expected because by

increasing the Reynolds number, the vortices become stronger which cause low
pressure in the wake, and maximum low pressure attain at the center of each

vortex.
It has shown from Fig.9 and Fig.10 that the flow separates alternately around

symmetrical bodies with sharp corner such as the front side of bluff bodies. It is

also seen from all of the above figures, the stagnation zone near the mid point of

the front face of the cylinders, where the flow divided equally into two parts.

Since the flow separates from the leading edges corner of the bluff bodies, it

forms vortices that travel along the streamwise direction. For Re : 50, a pair of

symmetrical vortices are formed upper and lower part of the body. The flow field

is found to be symmetrical about the centerline of channel. Moreover, the vortex

becomes more prominent as well as number of vorticity when the Reynolds

number increased. Therefore, the viscous effects are confined to the far from the

body. Figs.9 (ii)-(ii i) and Figs.l0 (iD-(iii), the important changed in the flow is

observed for high Reynolds number (: 100,200).The flow behind the body is

characterized by Von-Karrnan vortex street, which consists of vortices in a

regular arrangement. These alternating vortices with the same strength and size

are shed from the upper and lower leading edges. The distance between

consecutive vortices remains almost constant. Clearly, from the above figures, it

is seen that the number of vortices as well as the width of the vortices are

stronger in the wake of the downstream of circular cylinder than that of square

cylinder. It is obvious that the flow pattern in the wake of the bluff body is
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Figure 8: Pressure contours around a square cylinder for (i) Re : 100 and
(i i )  Re:200.

Figure 9: Vortex contours around a circular cylinder for (i) Re : 50, (ii) Re :100

and ( i i i )  Re:200.
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Figure 10: Vortex contours around a square cylinder for (i) Re :50, (ii) Re :100
and (i i i )  Re:200.

strongly related to the non dimensional parameter Reynolds number. When Re is
low, no Karman vortex street can be detected in the wake of the body. However,
when Re is above a certain value, a Karman Vortex street is visible in the wake
of the body. A laminar vortex shedding region is known by experimentally to
occur for the Reynolds number in the range approximately from 50-80 around a
circular cylinder [13] and from a square cylinder when Re : 70 ll2l. In the
present simulation, it is investigated that, the critical Reynolds number for a
circular cylinder is about Re : 75 and for a square cylinder is about 83.

4 CONCLUSIONS

In this study, the lattice Boltzmann method (LBM) is successfully applieC to
simulate a two-dimensional channel flow driven by a pressure difference around
bluff bodies. The flow pattem in the wake of the bluffbody is strongly related to
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the non dimensional parameter Reynolds number. For lower Reynolds number,
no Karman vortex street can be detected in the wake of the body i.e. the

variations in the contours are not significant as the recirculation regions are fully
developed. However, in the case of higher Reynolds number, an important
changed in the flow is observed. It is investigated that the Von Karman Vortex
street is visible in the wake of the body when the Reynolds number is above a
certain value. These critical values of Reynolds nurnber to change of fluid flow

behaviors are observed when Re > 75 for circular cvlinder and Re > 83 for
square cylinder.
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